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My book

A pack of wolves, a bunch of grapes or a flock of pigeons
are all examples of sets of things.



Relations

Definition: A relation on a set A is a set of ordered pairs of
elements of A.
Alternatively, you can think of it as a subset of the Cartesian
product A× A.

If an ordered pair (a, b) is an element of a relation R, we write aRb.
Relations are almost always denoted by symbols; one prominent
example being the equivalence relation =.
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Ordering
Definition: An ordering is a relation that shows a hierarchy
between elements of a set.

Examples: (N,≤), (Q, >), (℘(A),⊆).

Definition: We call a set A with an order ≤ partially ordered if for
every x , y , and z in A, we have

x ≤ x ;

x ≤ y and y ≤ z implies x ≤ z ;

x ≤ y and y ≤ x implies x = y ;

and totally ordered if in addition for every x , y ∈ A either

x ≤ y or y ≤ x .
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Well Ordering

Definition: A set A with total ordering ≤ is well ordered if every
nonempty subset has a least element in this ordering.

Example: (N,≤) is well ordered.

(℘(A),⊆) is not a well order.

Example: The set Z, with the ordering ≤ (here in the usual
sense), is totally ordered, but not well-ordered.
Why? Consider the set of negative integers.

We can, however, define a new order, ≤w , that is a well ordering of
the integers; we proceed to do so as an exercise in well ordering.
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Example: Well Ordering of the Integers

Define ≤w such that, for all integers x , y , and z ,

I if |x | < |y |, then x ≤w y (and vice-versa);

I if |x | = |y |, then

if x < y , then x <w y (and vice-versa);

if x = y , then x =w y .

Our new ≤w is a well ordering of Z. Why?
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More Well Orderings of Z

There are a multitude of ways we can well order the integers:

(Z,≤w ) ∼= 0,−1, 1,−2, 2, ...

(Z,≤w+1) ∼= −1, 1,−2, 2, ..., 0

(Z,≤w+3) ∼= 2,−2, 3,−3, ..., 0,−1, 1

(Z,≤w+w ) ∼= 0, 1, 2, 3, ...,−1,−2,−3, ...
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Well Ordering Theorem

Well Ordering Theorem: Every set can be well-ordered.

This theorem really means any set: for example,

R, C, or Z× 2R × C.

Proof. Too long and technical for the scope of this presentation.
We will see its impact soon, but first we turn to constructing
ordinals.
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Ordinals

Ordinals are, informally, sets that we use to talk about well
orderings.

An example of ordinals that you are familiar with is the set of finite
ordinals.

We denote this set as ω, though you may know it as N.
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Constructing Finite Ordinals

0 = ∅

1 = {0} = {∅}

2 = {0, 1} = {∅, {∅}}

3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

...

n = {0, 1, 2, . . . , n − 1}

n + 1 = {0, 1, 2, . . . , n − 1, n} = n ∪ {n}

...

Note: For finite ordinals, x < y implies x ∈ y and x ≤ y implies
x ⊆ y .
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Transfinite Ordinals

Definition: ω is the set of all finite ordinals. In other words,

ω = {0, 1, 2, 3, ...}.

ω is the first transfinite ordinal as well as the first limit ordinal.

Definition: A limit ordinal is any ordinal that has no immediate
predecessor.
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Closing Thoughts

I Ordinal arithmetic

I Cardinal numbers and arithmetic

I Continuum hypothesis
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Thank you!


