Abstract Algebra Prelim
Aug. 2020
Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. ($\mathbf{1 0} \mathbf{~ p t s}$) The commutator subgroup of a group G, denoted by G^{\prime}, is the subgroup generated by all commutators $[x, y]=x y x^{-1} y^{-1}$ for $x, y \in G$.
For an integer $n \geq 2$, define

$$
G=\left\{\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right): a \in(\mathbf{Z} / n \mathbf{Z})^{\times}, b \in \mathbf{Z} / n \mathbf{Z}\right\} \subset \mathrm{GL}_{2}(\mathbf{Z} / n \mathbf{Z}) .
$$

(a) (4 pts) Show $N:=\left\{\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right): b \in \mathbf{Z} / n \mathbf{Z}\right\}$ is a normal subgroup of G and $G / N \cong(\mathbf{Z} / n \mathbf{Z})^{\times}$.
(b) ($\mathbf{2} \mathbf{~ p t s)}$) Show N is cyclic with generator $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(c) ($\mathbf{4} \mathbf{~ p t s) ~ W h e n ~} n \geq 3$ is odd, use (a) and (b) to show that $G^{\prime}=N$.
2. ($\mathbf{1 0} \mathbf{~ p t s)}$ Let G be a group. Recall that an automorphism of G is an isomorphism $G \rightarrow G$. The two parts below can be done independently.
(a) ($\mathbf{5} \mathbf{~ p t s}$) For a prime p, let G be a cyclic group of order p written multiplicatively. Prove that the automorphisms of G are precisely the functions $f: G \rightarrow G$ where $f(g)=g^{k}$ for all $g \in G$ and some exponent $k \not \equiv 0 \bmod p$.
(b) ($\mathbf{5} \mathbf{~ p t s})$ For a prime p, let $G=(\mathbf{Z} / p \mathbf{Z})^{2}$. Show that the automorphisms of G are precisely the functions $f: G \rightarrow G$ where $f\binom{x}{y}=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}$ for some $a, b, c, d \in \mathbf{Z} / p \mathbf{Z}$ such that $a d-b c \not \equiv 0 \bmod p$.
3. ($\mathbf{1 0} \mathbf{p t s}$) Fix a group H and a group automorphism $f \in \operatorname{Aut}(H)$. Let $\varphi: \mathbf{Z} \rightarrow H$ by $\varphi(n)=f^{n}$. The two parts below about $H \rtimes_{\varphi} \mathbf{Z}$ can be done independently.
(a) ($\mathbf{5} \mathbf{~ p t s}$) In $H \rtimes_{\varphi} \mathbf{Z}$, prove (h, n) has finite order if and only if h has finite order and $n=0$.
(b) ($\mathbf{5} \mathbf{p t s}$) Let $\psi: \mathbf{Z} \rightarrow H$ by $\psi(n)=f^{-n}$. Prove that $H \rtimes_{\varphi} \mathbf{Z} \cong H \rtimes_{\psi} \mathbf{Z}$ as groups.
4. ($\mathbf{1 0} \mathbf{p t s}$) For a finite subset $\left\{r_{1}, \ldots, r_{k}\right\}$ of \mathbf{Q}, the ring $\mathbf{Z}\left[r_{1}, \ldots, r_{k}\right]$ is the set of all sums of products of nonnegative powers of r_{1}, \ldots, r_{k} with coefficients in \mathbf{Z}.
(a) ($\mathbf{3} \mathbf{~ p t s}$) For relatively prime integers a and b, with $b \neq 0$, prove $\mathbf{Z}[a / b]=\mathbf{Z}[1 / b]$.
(b) ($\mathbf{3} \mathbf{~ p t s}$) Let $N>1$ in \mathbf{Z} have prime factorization $p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ for distinct primes p_{1}, \ldots, p_{k} and $e_{j}>0$. Prove that $\mathbf{Z}[1 / N]=\left\{a / N^{e}: a \in \mathbf{Z}, e \geq 0\right\}$ and $\mathbf{Z}[1 / N]=\mathbf{Z}\left[1 / p_{1}, \ldots, 1 / p_{k}\right]$.
(c) ($\mathbf{4} \mathbf{p t s}$) Prove that $\mathbf{Z}[1 / N]$ has unit group $\left\langle-1, p_{1}, \ldots, p_{k}\right\rangle=\left\{ \pm p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}: a_{j} \in \mathbf{Z}\right\}$.
5. ($\mathbf{1 0} \mathbf{~ p t s}$) Let A be an $n \times n$ matrix with complex entries.
(a) ($\mathbf{4} \mathbf{~ p t s)}$) Show that A and its transpose A^{\top} have the same eigenvalues in \mathbf{C}.
(b) ($\mathbf{6} \mathbf{p t s}$) If λ is an eigenvalue of A, with $A \mathbf{v}=\lambda \mathbf{v}$ and $A^{\top} \mathbf{w}=\lambda \mathbf{w}$ in \mathbf{C}^{n}, then prove that the matrix $B=\mathbf{v w}^{\top}$ commutes with A. (Consider \mathbf{v} and \mathbf{w} as column vectors, so $\mathbf{v w}^{\top}$ is an $n \times n$ matrix. You may assume \mathbf{v} and \mathbf{w} are not $\mathbf{0}$, but it doesn't matter.)
6. ($\mathbf{1 0} \mathbf{~ p t s}$) Give examples as requested, with justification.
(a) $(\mathbf{2 . 5} \mathbf{~ p t s})$ A prime factorization of $3+i$ in $\mathbf{Z}[i]$.
(b) ($\mathbf{2 . 5} \mathbf{~ p t s}$) A unit in $\mathbf{Z}[x] /\left(x^{2}\right)$ other than ± 1.
(c) ($\mathbf{2 . 5} \mathbf{~ p t s}$) A maximal ideal \mathfrak{m} in $\mathbf{Z}[x]$ such that $\mathbf{Z}[x] / \mathfrak{m}$ has order 27 .
(d) (2.5 pts) A ring-theoretic property that $\mathbf{Q}[x] /\left(x^{2}-1\right)$ and $\mathbf{Q}[x] /\left(x^{2}\right)$ do not share (so the rings are not isomorphic).

