Abstract Algebra Prelim

Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. (10 pts) The commutator subgroup of a group G, denoted by G', is the subgroup generated by all commutators $[x, y] = xyx^{-1}y^{-1}$ for $x, y \in G$.

For an integer $n \geq 2$, define

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) : a \in (\mathbf{Z}/n\mathbf{Z})^{\times}, \ b \in \mathbf{Z}/n\mathbf{Z} \right\} \subset \mathrm{GL}_2(\mathbf{Z}/n\mathbf{Z}).$$

- (a) (4 pts) Show $N := \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{Z}/n\mathbb{Z} \}$ is a normal subgroup of G and $G/N \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- (b) (2 pts) Show N is cyclic with generator $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- (c) (4 pts) When $n \ge 3$ is odd, use (a) and (b) to show that G' = N.
- 2. (10 pts) Let G be a group. Recall that an *automorphism* of G is an isomorphism $G \to G$. The two parts below can be done independently.
 - (a) (5 pts) For a prime p, let G be a cyclic group of order p written multiplicatively. Prove that the automorphisms of G are precisely the functions $f: G \to G$ where $f(g) = g^k$ for all $g \in G$ and some exponent $k \neq 0 \mod p$.
 - (b) (5 pts) For a prime p, let $G = (\mathbf{Z}/p\mathbf{Z})^2$. Show that the automorphisms of G are precisely the functions $f: G \to G$ where $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax+by \\ cx+dy \end{pmatrix}$ for some $a, b, c, d \in \mathbf{Z}/p\mathbf{Z}$ such that $ad bc \neq 0 \mod p$.
- 3. (10 pts) Fix a group H and a group automorphism $f \in Aut(H)$. Let $\varphi \colon \mathbb{Z} \to H$ by $\varphi(n) = f^n$. The two parts below about $H \rtimes_{\varphi} \mathbb{Z}$ can be done independently.
 - (a) (5 pts) In $H \rtimes_{\varphi} \mathbf{Z}$, prove (h, n) has finite order if and only if h has finite order and n = 0.
 - (b) (5 pts) Let $\psi \colon \mathbf{Z} \to H$ by $\psi(n) = f^{-n}$. Prove that $H \rtimes_{\varphi} \mathbf{Z} \cong H \rtimes_{\psi} \mathbf{Z}$ as groups.
- 4. (10 pts) For a finite subset $\{r_1, \ldots, r_k\}$ of **Q**, the ring $\mathbf{Z}[r_1, \ldots, r_k]$ is the set of all sums of products of nonnegative powers of r_1, \ldots, r_k with coefficients in **Z**.
 - (a) (3 pts) For relatively prime integers a and b, with $b \neq 0$, prove $\mathbf{Z}[a/b] = \mathbf{Z}[1/b]$.
 - (b) (3 pts) Let N > 1 in **Z** have prime factorization $p_1^{e_1} \cdots p_k^{e_k}$ for distinct primes p_1, \ldots, p_k and $e_j > 0$. Prove that $\mathbf{Z}[1/N] = \{a/N^e : a \in \mathbf{Z}, e \ge 0\}$ and $\mathbf{Z}[1/N] = \mathbf{Z}[1/p_1, \ldots, 1/p_k]$.
 - (c) (4 pts) Prove that $\mathbf{Z}[1/N]$ has unit group $\langle -1, p_1, \dots, p_k \rangle = \{\pm p_1^{a_1} \cdots p_k^{a_k} : a_j \in \mathbf{Z}\}.$
- 5. (10 pts) Let A be an $n \times n$ matrix with complex entries.
 - (a) (4 pts) Show that A and its transpose A^{\top} have the same eigenvalues in C.
 - (b) (6 pts) If λ is an eigenvalue of A, with $A\mathbf{v} = \lambda \mathbf{v}$ and $A^{\top}\mathbf{w} = \lambda \mathbf{w}$ in \mathbf{C}^n , then prove that the matrix $B = \mathbf{v}\mathbf{w}^{\top}$ commutes with A. (Consider \mathbf{v} and \mathbf{w} as column vectors, so $\mathbf{v}\mathbf{w}^{\top}$ is an $n \times n$ matrix. You may assume \mathbf{v} and \mathbf{w} are not $\mathbf{0}$, but it doesn't matter.)
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) A prime factorization of 3 + i in $\mathbf{Z}[i]$.
 - (b) (2.5 pts) A unit in $\mathbf{Z}[x]/(x^2)$ other than ± 1 .
 - (c) (2.5 pts) A maximal ideal \mathfrak{m} in $\mathbb{Z}[x]$ such that $\mathbb{Z}[x]/\mathfrak{m}$ has order 27.
 - (d) (2.5 pts) A ring-theoretic property that $\mathbf{Q}[x]/(x^2-1)$ and $\mathbf{Q}[x]/(x^2)$ do not share (so the rings are not isomorphic).