Applied Math Prelim August 2020

- 1. Let *H* be a Hilbert space, $T: H \to H$ be a linear bounded operator and $\{x_n\}_{n=1}^{\infty}$ be a sequence that converges weakly in *H*, i.e. $x_n \rightharpoonup x_0$.
 - (a) Show that $Tx_n \rightarrow Tx_0$ weakly in H.
 - (b) Show that if T is compact, then $Tx_n \to Tx_0$.
 - (c) Suppose for every weakly convergence sequence $x_n \rightharpoonup x_0$, we always have $Tx_n \rightarrow Tx_0$. Show that T is compact. (Hint: every bounded sequence in H has a weakly convergence subsequence.)
 - (d) Suppose $T_n : H \to H$ is linear bounded compactor operator for each $n = 1, 2, 3, \ldots$ Suppose $T_n \to T_0$ in operator norm. Show that T_0 is compact.
- 2. For any $f \in L^1_{loc}(\mathbb{R}^n)$, we let $\tilde{f} \in \mathcal{D}'(\mathbb{R}^n)$ be the distribution such that $\tilde{f}(\phi) = \int_{\mathbb{R}^n} f(z)\varphi(z) dz$ for any test function $\varphi \in \mathcal{D}(\mathbb{R}^n)$.
 - (a) Let $f \in L^1(\mathbb{R}^n)$ be non-negative with $\int_{\mathbb{R}^n} f(z) dz = 1$. Define $f_j(z) = j^n f(jz)$. Show that $\tilde{f}_j \to \delta$ in $\mathcal{D}'(\mathbb{R}^n)$, where δ is the Dirac distribution (delta function). Does your proof work if f can change sign?
 - (b) Let n = 2 and $z = (x, y) \in \mathbb{R}^2$. Take

$$f(x,y) = \begin{cases} x^2 + y^2, & \text{if } x^2 + y^2 \le 1, \\ 0, & \text{if otherwise.} \end{cases}$$

Compute the distribution derivative $\partial_1 \tilde{f} = \frac{\partial}{\partial x} \tilde{f}$. Simplify as much as possible.

- (c) If $\varphi(x,y) = x$ when $x^2 + y^2 \leq 2$ and has compact support in \mathbb{R}^2 . Using (b) or otherwise, evaluate $(\partial_1 \tilde{f})(\varphi)$.
- 3. (a) Find the Green's function G(x, y) for the operator A where

$$Au \equiv u'' - u$$

with $u(0) = u(\pi) = 0$.

(b) Define $T: L^2(0,\pi) \to L^2(0,\pi)$ such that for any $f \in L^2(0,\pi)$,

$$(Tf)(x) = \int_0^\pi G(x, y) f(y) \, dy$$

Explain what spectral theorem is and why it is applicable to T.

- (c) Show that $||T|| = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } T\}.$
- (d) Find an orthonormal basis of $L^2(0,\pi)$ via operator A.
- 4. Let $f: D \to Y$ be a mapping from an open set D in a normed linear space X to another normed linear space Y.
 - (a) State the definition of Fréchet derivative of f.
 - (b) Let D = X = Y = C[0, 1], the set of continuous functions equipped with the uniform norm. For any $u \in C[0, 1]$, define

 $f(u)(t) = \sin(u(t))$ for all $t \in [0, 1]$.

Show that $f:C[0,1]\to C[0,1]$ is Frechet differentiable at any $u\in C[0,1]$ and its derivative is given by

$$f'(u)h(t) = (\cos u(t)) h(t)$$

for all $h \in C[0, 1]$ and $t \in [0, 1]$.

(Depending on how you prove this. You may or may not need sin(A + B) = sin A cos B + cos A sin B.)

5. Let H be a Hilbert space and $A : H \to H$ be a linear bounded compact operator. Show that the range of I + A is closed.