GEOMETRY & TOPOLOGY PRELIM EXAM

AUGUST 2020

In the following problems, \mathbb{R}^n and \mathbb{C} are endowed with the standard topology unless otherwise indicated.

Problem 1. Prove or disprove the following statements.

- (1) Let A, B be two open subsets in a topological space X. Suppose that $A \bigcup B$ and $A \cap B$ are connected. Then A and B must be connected.
- (2) Let $\{A_i\}$ be a countable collection of open subsets of a topological space X. Suppose that $\bigcup_i A_i$ and $\bigcap_i A_i$ are connected. Then A_i must be connected for each *i*.

Problem 2. Let $n \ge 2$. Define a topology \mathcal{Z} on \mathbb{R}^n such that every nonempty open set of \mathcal{Z} is of the form $\mathbb{R}^n \setminus \{ \text{at most finitely many points} \}$. Show that any continuous function $f : (\mathbb{R}^n, \mathcal{Z}) \to \mathbb{R}$ is constant.

Problem 3.

Let $f : X \to Y$ be a continuous and injective map between topological spaces X and Y. Prove that if X is compact and Y is Hausdorff, then f is an embedding.

Problem 4. Define $M = \{(x, y, z) \in \mathbb{R}^3 : z^2 = x^2 + y^2 - 1\}$ with the induced topology from \mathbb{R}^3 .

- (1) Find a universal covering of M.
- (2) Let $X = M/\sim$ be the quotient space where \sim is the equivalence relation generated by the relation $(x, y, z) \sim (x, y, -z)$. Is the quotient map $q: M \to X$ a covering map? Explain your answer.

Problem 5. Let S^1 denote the unit circle $\{z \in \mathbb{C} : |z| = 1\}$, and let D denote the closed unit disk $\{z \in \mathbb{C} : |z| \le 1\}$. Let X be a topological space. Prove that the following statements are equivalent:

- (1) For every point $x \in X$, the fundamental group $\pi_1(X, x)$ is trivial.
- (2) For every continuous function $f: S^1 \to X$, there exists a continuous map $F: D \to X$ which extends f.

Problem 6. Let X be the space obtaining from \mathbb{R}^3 by removing two circles $C_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + (y - 1)^2 = 1, z = 0\}$ and $C_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + (y + 1)^2 = 1, z = 0\}$. Compute $\pi_1(X)$ and justify your answer.

