Probability Prelim Exam for Actuarial Students August 2020

Instructions

- (a). The exam is closed book and closed notes.
- (b). Answers must be justified whenever possible in order to earn full credit.
- (c). Points will be deducted for mathematically incorrect statements.
- 1. (10 points) Let X be a random variable defined on a probability space (Ω, \mathscr{F}, P) . Suppose that P(X > 0) > 0. Show that there exits a $\delta > 0$ such that $P(X \ge \delta) > 0$.
- 2. (10 points) Let (Ω, \mathcal{F}) be a measurable space and let X_1, X_2, \ldots be real-valued random variables. Show that the set $\{\omega \in \Omega : \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} X_n(\omega) > 1\}$ is an event.
- 3. (10 points) State and prove the (first) Borel-Cantelli lemma.
- 4. (20 points) Prove or disprove the following
 - (a). If $X_1, X_2, ...$ in $L^1(P)$, and $M_n = \max\{X_1, ..., X_n\}$, then $M_n \in L^1(P)$.
 - (b). Suppose (X_n) are random variables satisfying

$$E[X_n] = 2$$
 and $E[X_n^2] = 4 + \frac{1}{n}$,

then $X_n \to 2$ in probability.

- (c). If X is a random variable in $L^1(P)$, then $\lim_{x\to\infty} xP(|X| > x) = 0$.
- (d). If X is a random variable satisfying $\lim_{x\to\infty} xP(|X| > x) = 0$, then X is in $L^1(P)$.
- 5. (10 points) Let $\{B_t\}_{t\geq 0}$ be a standard Brownian motion and let

$$Z_n = \frac{1}{n} \sum_{i=1}^n B_i,$$

where n is a positive integer. Compute the distribution of Z_n .

6. (10 points) Let $\{B_t\}_{t\geq 0}$ be a standard Brownian motion and let

$$\tau = \inf\{t \ge 0 : B_t \le -1 \text{ or } B_t \ge 2\}.$$

- (a). Compute the distribution of B_{τ} .
- (b). Calculate $E[\tau]$.