Instructions and notation:

- (i) All problems are worth 10 points. Give full justifications for all answers in the exam booklet.
- (ii) Lebesgue measure on \mathbb{R}^n is denoted by $|\cdot|$.
- 1. Assume that f is a Lebesgue integrable function in \mathbb{R}^n . If $\int_E f = 0$ for every Lebesgue measurable set E in \mathbb{R}^n , then f = 0 a.e in \mathbb{R}^n
- 2. Let (X, Σ, μ) be a measure space. Let $\{f_k\}_{k \in \mathbb{N}}$ and $\{\phi_k\}_{k \in \mathbb{N}}$ be sequences of measurable functions. Assume that $f_k \to f$ pointwise, $\phi_k \to \phi \mu$ -a.e. and $|f_k| \le \phi_k \mu$ -a.e. If $\phi \in L^1(X, d\mu)$ and $\int \phi_k \to \int \phi$, then $\int |f_k f| \to 0$.
- 3. Let (X, Σ, μ) be a measure space and suppose that $f, \{f_k\}_{k \in \mathbb{N}} \in L^p(X, d\mu)$ for 0 .
 - (a) (4 points) Show that if $||f f_k||_p \to 0$, then $||f_k||_p \to ||f||_p$.
 - (b) (4 points) Conversely, if $f_k \to f$ pointwise and $||f_k||_p \to ||f||_p$ for $0 , show that <math>||f f_k||_p \to 0$.
 - (c) (2 points) Show that (b) may fail if $p = \infty$.
- 4. Suppose that *W* is a Lebesgue nonmeasurable set in [0, 1]. Prove that there exists some $0 < \epsilon < 1$ such that for any Lebesgue measurable subset $E \subset [0, 1]$ with $|E| \ge \epsilon$, the set $W \cap E$ must be Lebesgue nonmeasurable.
- 5. (a) (5 points) Let $(X, \Sigma, \mu), (X, \Sigma, \nu)$ be two measure spaces such that $\nu(X) < \infty$. Prove that ν is absolutely continuous with respect to μ if and only if for every $\epsilon > 0$ there exists $\delta > 0$ such that if $A \in \Sigma$ with $\mu(A) < \delta$ then $\nu(A) < \epsilon$.
 - (b) (5 points) Give an example of a pair of measure spaces $(X, \Sigma, \mu), (X, \Sigma, \nu)$ such that ν is absolutely continuous with respect to μ , but given $\epsilon > 0$ there is no $\delta > 0$ such that $\nu(A) < \epsilon$ for every $A \in \Sigma$ with $\mu(A) < \delta$.
- 6. Assume that $\{E_1, \ldots, E_m\}$ is a family of Lebesgue measurable subsets of \mathbb{R}^n and k > 0 is a positive integer. Let $E \subset \mathbb{R}^n$ be a measurable subset with |E| > 0. Suppose that almost every $x \in E$ belongs to at least k of the E_j . Prove that there is at least one E_l such that $|E_l| \ge \frac{k}{m}|E|$.
- 7. (a) (3 points) Let $E \subset \mathbb{R}^n$ be a Lebesgue measurable set with |E| > 0. Use the Lebesgue Differentiation Theorem to prove that

$$\lim_{r \to 0} \frac{|Q(x,r) \cap E|}{|Q(x,r)|} = 1 \text{ for a.e. } x \in E,$$

where Q(x, r) denotes a cube with sides parallel to the axes, centered at x with sidelength 2r.

(b) (7 points) Let $E \subset \mathbb{R}^n$ be a Lebesgue measurable set with |E| > 0 and let *D* be a dense countable subset of \mathbb{R}^n . Prove that $|\mathbb{R}^n \setminus \bigcup_{x \in D} (x + E)| = 0$, where $x + E := \{x + e : e \in E\}$. *Hint: Use part (a).*