Computability Theory

Jose Emilio Alcantara Regio \& Waseet Kazmi

University of Connecticut
December 9, 2020

Materials used

Computability Theory, Rebecca Weber

Overview

(1) Introduction
(2) Capturing Computability
(3) Computable Functions
(4) Computable and Computably Enumerable Sets
(5) Turing Reductions
© Turing Degrees

Introduction

Introduction

- What is Computability Theory?
- What does it mean to be computable?

Examples of computability

- There is an algorithm
- We can solve it in a finite amount of time using a finite number of steps

Examples of computability

- Procedure
- Step-by-step

Examples of computability

- "Procedure"?
- Step-by-step

Examples of computability

- "Procedure"?
- "Step-by-step"?

Defining Computability

- We need a rigorous definition for computability
- Must capture the intuitive understanding that we already have
- This was the goal of David Hilbert, Stephen Kleene, Alonzo Church, and Alan Turing
- Turing Machines were ultimately accepted as the satisfactory model for computation
- But why?

Capturing Computability

Preliminaries

Definition

A partial function is a function whose domain is a subset of $\mathbb{N}=\{0,1,2, \ldots\}$.
$\mathrm{Ex}: f(x)=\frac{1}{x}, f(x)=\log (x)$

Definition

A total function is a function whose domain is the entirety of \mathbb{N}.

- Why do we need partiality for functions?
\Rightarrow The function might not be defined on some inputs
\Rightarrow Or, the computation of the function on an input might never stop

Preliminaries

Definition

If x is in the domain of f, then we say that the computation of f on x halts or converges, denoted by $f(x) \downarrow$.

Definition

If x is not in the domain of f, then we say that the computation of f on x diverges, denoted by $f(x) \uparrow$.

Preliminaries

Definition

The characteristic function of a set A is a total function defined as follows:

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

Some attempts at defining computability

- Partial recursive functions
- Stephen Kleene
- Purely mathematical intuition
- Lambda calculus
- Alonzo Church
- Substitution
- Used today in functional programming languages such as Haskell and Lisp
- Neither of these definitions were accepted as the satisfactory definition for computability

Turing Machine

- Alan Turing
- Thought about what humans do when they solve problems
- We read some symbols on a piece of paper, think, and then make a decision
- Turing Machine mimics this behavior
- Consists of a tape of infinite length and a tape head
- Tape is divided into cells that contain a symbol
- Tape head reads a symbol from a cell and then makes a decision to either write a new symbol onto the cell or move

Turing Machine

Figure: a visual representation of a Turing Machine.

Turing Machine

- Why were Turing Machines chosen as the model for computation?
\Rightarrow Based on human behavior; intuitive to use
\Rightarrow Mechanical aspect; visualize step-by-step process

Church-Turing Thesis

- Did we finally capture the full notion of computability?
- We can never prove that we have done so
- Requires an equivalence between a formal definition and an intuitive understanding
- But, it turns out that partial recursive functions, Lambda functions, and Turing Machines are all equivalent!

Church-Turing Thesis

A function is computable iff it is Turing-computable, i.e., there is an equivalent Turing Machine.

Aside: Enumerating Turing Machines

- There is a computable bijection between the set of Turing Machines and \mathbb{N}
- We can "translate" between Turing Machines and the natural numbers
- Translation is done in a computable manner in both directions
- The encoding of a Turing Machine is known as its index
- Notation: φ_{e}
- Turing Machine with index e
- Or, the eth Turing Machine

Computable Functions

Recursion Theorem

Recursion Theorem

Let f be a total computable function. Then there is an index n such that $\varphi_{n}=\varphi_{f(n)}$.

We will use the Recursion Theorem to prove Rice's Theorem.

Index Sets

Definition

Let $A \subseteq \mathbb{N}$. For any x and y, if we have that $x \in A$ and $\varphi_{x}=\varphi_{y}$ implies that $y \in A$, then A is an index set.

Index Sets

Examples:

- Fin $=\left\{e \mid\right.$ dom $\left.\varphi_{e}<\infty\right\}$
- Computable functions with finite domains
- Tot $=\left\{e \mid \operatorname{dom} \varphi_{e}=\mathbb{N}\right\}$
- Total computable functions

Basically "cherry-picking" computable functions based on what they do (semantic information)

Rice's Theorem shows us that we cannot do this "cherry-picking" in a computable manner

Rice's Theorem

Rice's Theorem

Suppose A is a nontrivial index set, i.e.,

$$
\varnothing \subsetneq A \subsetneq \mathbb{N} .
$$

Then χ_{A} is noncomputable.
Recall that for a set A, its characteristic function is defined as:

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

Proving Rice's Theorem

- We will prove by contradiction.
- Suppose A is a nontrivial index set and that χ_{A} is computable.
- Since $\varnothing \subsetneq A \subsetneq \mathbb{N}$, then we can fix $a \in A, b \notin A$.
- Define f as follows:

$$
f(x)= \begin{cases}a & \chi_{A}(x)=0 \\ b & \chi_{A}(x)=1\end{cases}
$$

Proving Rice's Theorem

- Since we assumed that χ_{A} is computable, then f is also computable.
- Additionally, since χ_{A} is a characteristic function, then it must be total. Thus, f is also total.
- Therefore, f is a total computable function.
- By the Recursion Theorem, there is some index n such that $\varphi_{n}=\varphi_{f(n)}$.

Proving Rice's Theorem

- We have two cases:
(1) If $n \in A$, then $f(n)=b \notin A$. But this contradicts our definition of an index set because if $n \in A$ and $\varphi_{n}=\varphi_{b}$, then we should have $b \in A$.
(2) If $n \notin A$, then $f(n)=a \in A$. Again, we have a contradiction of our definition of index sets because if $a \in A$ and $\varphi_{a}=\varphi_{n}$, then we should have $n \in A$.
- In both cases, we have a contradiction.
- Therefore, our assumption was incorrect and χ_{A} must be a noncomputable function.

Computable and Computably Enumerable Sets

Computable Sets

Definition

A set is computable if its characteristic function is computable.

Examples:

- $A=\{10,15,19,5\}$
- $B=\{n \in \mathbb{N} \mid \exists k \in \mathbb{N}$ s.t. $n=2 k\}=\{0,2,4,6, \ldots\}$

Computably Enumerable Sets

Definition

A set is computably enumerable if there is a computable procedure that outputs all the elements of the set, allowing repeats and does not have to respect an order.

Think of the procedure as an infinitely-printing printer, and the set as its receipt

Example: The Halting Set

- The set $K=\left\{e \mid \varphi_{e}(e) \downarrow\right\}$ is known as the halting set
- The set of computable functions that halt on its index
- K is noncomputable
- However, K is computably enumerable
- Step 1: Run one step of $\varphi_{0}(0)$
- Step 2: Run another step of $\varphi_{0}(0)$, and then run two steps of $\varphi_{1}(1)$
- Step 3: Run another step of $\varphi_{0}(0)$ and $\varphi_{1}(1)$, and then run three steps of $\varphi_{2}(2)$
- Step i : Run i steps of $\varphi_{0}(0)$ to $\varphi_{i-1}(i-1)$
- If any of the computations converge at any point, output the index
\Rightarrow Dovetailing

Computable vs Computably Enumerable Sets

- Difference is in the waiting time
- Computable Sets
- We can know whether or not an element is in the set within a finite amount of time
- Computably Enumerable Sets
- Keep waiting until the element is enumerated
- If the element is in the set, then it is guaranteed that it will be enumerated at a certain point because the procedure enumerates all elements of the set
- If the element is not in the set, then we are just waiting for something that will never come

Turing Reductions

Oracle Turing Machine

- Oracle Turing Machine
- Turing Machine hooked up to a black box, known as the oracle
- The oracle knows information about a particular set, say A
- During computation, the Turing Machine can ask the oracle if a number is in A
- Notation: φ_{e}^{A}
- e th Turing Machine with oracle A

Turing Reductions

Definition

Let $A, B \subseteq \mathbb{N}$. If there is an index e such that $\varphi_{e}^{B}=\chi_{A}$, then A is Turing-reducible to B, denoted by $A \leq_{T} B$

- We are using answers from χ_{B} to calculate the answer for χ_{A}
- In other words, if we know how to solve B, then we can solve A
- We are reducing the problem from A to B

Turing Degrees

Turing Equivalence

Definition
Let $A, B \subseteq \mathbb{N}$. If $A \leq_{T} B$ and $B \leq_{T} A$, then A and B are Turing equivalent, denoted by $A \equiv_{T} B$.

Turing Degrees

- Turing Equivalence is an equivalence relation
- Thus, you can take the quotient of $\mathcal{P}(\mathbb{N})$ by \equiv_{T}
- i.e., partition sets of natural numbers by Turing equivalence
- Each equivalence class ("slice") is known as a Turing degree

Special thank-you to Waseet for his mentorship, and to Professor Katie for making this all happen!

