
Computability Theory

Jose Emilio Alcantara Regio & Waseet Kazmi

University of Connecticut

December 9, 2020

1 / 40

Materials used

Computability Theory, Rebecca Weber

2 / 40

Overview

1 Introduction

2 Capturing Computability

3 Computable Functions

4 Computable and Computably Enumerable Sets

5 Turing Reductions

6 Turing Degrees

3 / 40

Introduction

4 / 40

Introduction

• What is Computability Theory?

• What does it mean to be computable?

5 / 40

Examples of computability

• There is an algorithm

• We can solve it in a finite amount of time using a finite
number of steps

6 / 40

Examples of computability

• Procedure

• Step-by-step

7 / 40

Examples of computability

• “Procedure”?

• Step-by-step

8 / 40

Examples of computability

• “Procedure”?

• “Step-by-step”?

9 / 40

Defining Computability

• We need a rigorous definition for computability

• Must capture the intuitive understanding that we already have

• This was the goal of David Hilbert, Stephen Kleene, Alonzo
Church, and Alan Turing

• Turing Machines were ultimately accepted as the satisfactory
model for computation

• But why?

10 / 40

Capturing Computability

11 / 40

Preliminaries

Definition

A partial function is a function whose domain is a subset of
N = {0, 1, 2, . . .}.

Ex: f(x) = 1
x , f(x) = log(x)

Definition

A total function is a function whose domain is the entirety of N.

• Why do we need partiality for functions?

⇒ The function might not be defined on some inputs

⇒ Or, the computation of the function on an input might never
stop

12 / 40

Preliminaries

Definition

If x is in the domain of f , then we say that the computation of f
on x halts or converges, denoted by f(x) ↓.

Definition

If x is not in the domain of f , then we say that the computation of
f on x diverges, denoted by f(x) ↑.

13 / 40

Preliminaries

Definition

The characteristic function of a set A is a total function defined
as follows:

χA(x) =

{
1 x ∈ A
0 x /∈ A

14 / 40

Some attempts at defining computability

• Partial recursive functions
• Stephen Kleene
• Purely mathematical intuition

• Lambda calculus
• Alonzo Church
• Substitution
• Used today in functional programming languages such as

Haskell and Lisp

• Neither of these definitions were accepted as the satisfactory
definition for computability

15 / 40

Turing Machine

• Alan Turing
• Thought about what humans do when they solve problems
• We read some symbols on a piece of paper, think, and then

make a decision

• Turing Machine mimics this behavior
• Consists of a tape of infinite length and a tape head

• Tape is divided into cells that contain a symbol
• Tape head reads a symbol from a cell and then makes a

decision to either write a new symbol onto the cell or move

16 / 40

Turing Machine

Figure: a visual representation of a Turing Machine.

17 / 40

Turing Machine

• Why were Turing Machines chosen as the model for
computation?

⇒ Based on human behavior; intuitive to use

⇒ Mechanical aspect; visualize step-by-step process

18 / 40

Church-Turing Thesis

• Did we finally capture the full notion of computability?
• We can never prove that we have done so
• Requires an equivalence between a formal definition and an

intuitive understanding
• But, it turns out that partial recursive functions, Lambda

functions, and Turing Machines are all equivalent!

Church-Turing Thesis

A function is computable iff it is Turing-computable, i.e., there is
an equivalent Turing Machine.

19 / 40

Aside: Enumerating Turing Machines

• There is a computable bijection between the set of Turing
Machines and N
• We can “translate” between Turing Machines and the natural

numbers
• Translation is done in a computable manner in both directions
• The encoding of a Turing Machine is known as its index

• Notation: ϕe

• Turing Machine with index e
• Or, the eth Turing Machine

20 / 40

Computable Functions

21 / 40

Recursion Theorem

Recursion Theorem

Let f be a total computable function. Then there is an index n
such that ϕn = ϕf(n).

We will use the Recursion Theorem to prove Rice’s Theorem.

22 / 40

Index Sets

Definition

Let A ⊆ N. For any x and y, if we have that x ∈ A and ϕx = ϕy

implies that y ∈ A, then A is an index set.

23 / 40

Index Sets

Examples:
• Fin = {e | dom ϕe <∞}

• Computable functions with finite domains

• Tot = {e | dom ϕe = N}
• Total computable functions

Basically “cherry-picking” computable functions based on what
they do (semantic information)

Rice’s Theorem shows us that we cannot do this “cherry-picking”
in a computable manner

24 / 40

Rice’s Theorem

Rice’s Theorem

Suppose A is a nontrivial index set, i.e.,

∅ (A (N.

Then χA is noncomputable.

Recall that for a set A, its characteristic function is defined as:

χA(x) =

{
1 x ∈ A
0 x /∈ A

25 / 40

Proving Rice’s Theorem

• We will prove by contradiction.

• Suppose A is a nontrivial index set and that χA is computable.

• Since ∅ (A (N, then we can fix a ∈ A, b /∈ A.

• Define f as follows:

f(x) =

{
a χA(x) = 0

b χA(x) = 1

26 / 40

Proving Rice’s Theorem

• Since we assumed that χA is computable, then f is also
computable.

• Additionally, since χA is a characteristic function, then it must
be total. Thus, f is also total.

• Therefore, f is a total computable function.

• By the Recursion Theorem, there is some index n such that
ϕn = ϕf(n).

27 / 40

Proving Rice’s Theorem

• We have two cases:

1 If n ∈ A, then f(n) = b /∈ A. But this contradicts our
definition of an index set because if n ∈ A and ϕn = ϕb, then
we should have b ∈ A.

2 If n /∈ A, then f(n) = a ∈ A. Again, we have a contradiction
of our definition of index sets because if a ∈ A and ϕa = ϕn,
then we should have n ∈ A.

• In both cases, we have a contradiction.

• Therefore, our assumption was incorrect and χA must be a
noncomputable function. �

28 / 40

Computable and Computably Enumerable Sets

29 / 40

Computable Sets

Definition

A set is computable if its characteristic function is computable.

Examples:

• A = {10, 15, 19, 5}
• B = {n ∈ N | ∃k ∈ N s.t. n = 2k} = {0, 2, 4, 6, . . .}

30 / 40

Computably Enumerable Sets

Definition

A set is computably enumerable if there is a computable
procedure that outputs all the elements of the set, allowing repeats
and does not have to respect an order.

Think of the procedure as an infinitely-printing printer, and the set
as its receipt

31 / 40

Example: The Halting Set

• The set K = {e | ϕe(e) ↓} is known as the halting set
• The set of computable functions that halt on its index

• K is noncomputable
• However, K is computably enumerable

• Step 1: Run one step of ϕ0(0)
• Step 2: Run another step of ϕ0(0), and then run two steps of
ϕ1(1)

• Step 3: Run another step of ϕ0(0) and ϕ1(1), and then run
three steps of ϕ2(2)

• Step i: Run i steps of ϕ0(0) to ϕi−1(i− 1)
• If any of the computations converge at any point, output the

index
⇒ Dovetailing

32 / 40

Computable vs Computably Enumerable Sets

• Difference is in the waiting time
• Computable Sets

• We can know whether or not an element is in the set within a
finite amount of time

• Computably Enumerable Sets
• Keep waiting until the element is enumerated
• If the element is in the set, then it is guaranteed that it will be

enumerated at a certain point because the procedure
enumerates all elements of the set

• If the element is not in the set, then we are just waiting for
something that will never come

33 / 40

Turing Reductions

34 / 40

Oracle Turing Machine

• Oracle Turing Machine
• Turing Machine hooked up to a black box, known as the oracle
• The oracle knows information about a particular set, say A
• During computation, the Turing Machine can ask the oracle if

a number is in A

• Notation: ϕA
e

• eth Turing Machine with oracle A

35 / 40

Turing Reductions

Definition

Let A,B ⊆ N. If there is an index e such that ϕB
e = χA, then A is

Turing-reducible to B, denoted by A ≤T B

• We are using answers from χB to calculate the answer for χA

• In other words, if we know how to solve B, then we can solve
A

• We are reducing the problem from A to B

36 / 40

Turing Degrees

37 / 40

Turing Equivalence

Definition

Let A,B ⊆ N. If A ≤T B and B ≤T A, then A and B are Turing
equivalent, denoted by A ≡T B.

38 / 40

Turing Degrees

• Turing Equivalence is an equivalence relation
• Thus, you can take the quotient of P(N) by ≡T

• i.e., partition sets of natural numbers by Turing equivalence

• Each equivalence class (“slice”) is known as a Turing degree

39 / 40

Special thank-you to Waseet for his mentorship, and to Professor
Katie for making this all happen!

40 / 40

	Introduction
	Capturing Computability
	Computable Functions
	Computable and Computably Enumerable Sets
	Turing Reductions
	Turing Degrees

