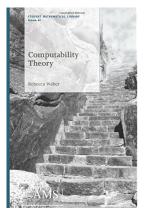
Computability Theory

Jose Emilio Alcantara Regio & Waseet Kazmi

University of Connecticut

December 9, 2020



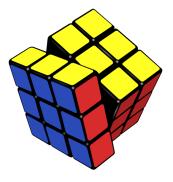
Computability Theory, Rebecca Weber

1 Introduction

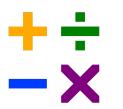
- 2 Capturing Computability
- **3** Computable Functions
- **4** Computable and Computably Enumerable Sets
- **5** Turing Reductions
- **6** Turing Degrees

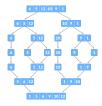
Introduction

- What is Computability Theory?
- What does it mean to be *computable*?

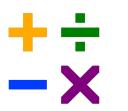


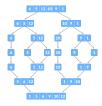
- There is an *algorithm*
- We can solve it in a finite amount of time using a finite number of *steps*



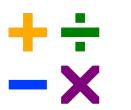


- Procedure
- Step-by-step





- "Procedure"?
- Step-by-step





- "Procedure"?
- "Step-by-step"?

- We need a **rigorous** definition for computability
- Must capture the intuitive understanding that we already have
- This was the goal of David Hilbert, Stephen Kleene, Alonzo Church, and Alan Turing
- Turing Machines were ultimately accepted as the satisfactory model for computation
- But why?

Capturing Computability

A partial function is a function whose domain is a subset of $\mathbb{N} = \{0, 1, 2, \ldots\}.$

Ex:
$$f(x) = \frac{1}{x}$$
, $f(x) = \log(x)$

Definition

A total function is a function whose domain is the entirety of \mathbb{N} .

- Why do we need partiality for functions?
- \Rightarrow The function might not be defined on some inputs
- $\Rightarrow~{\rm Or},$ the computation of the function on an input might never stop

If x is in the domain of f, then we say that the computation of f on x halts or converges, denoted by $f(x) \downarrow$.

Definition

If x is not in the domain of f, then we say that the computation of f on x diverges, denoted by $f(x) \uparrow$.

The **characteristic function** of a set A is a *total* function defined as follows:

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Some attempts at defining computability

- Partial recursive functions
 - Stephen Kleene
 - Purely mathematical intuition
- Lambda calculus
 - Alonzo Church
 - Substitution
 - Used today in functional programming languages such as Haskell and Lisp
- Neither of these definitions were accepted as the satisfactory definition for computability

Alan Turing

- Thought about what humans do when they solve problems
- We read some symbols on a piece of paper, think, and then make a decision
- Turing Machine mimics this behavior
- Consists of a tape of infinite length and a tape head
 - Tape is divided into cells that contain a symbol
 - Tape head reads a symbol from a cell and then makes a decision to either write a new symbol onto the cell or move

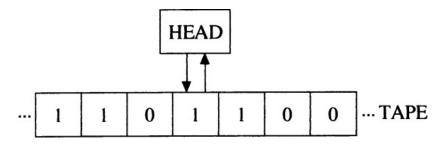


Figure: a visual representation of a Turing Machine.

- Why were Turing Machines chosen as the model for computation?
- \Rightarrow Based on human behavior; intuitive to use
- ⇒ Mechanical aspect; visualize step-by-step process

Church-Turing Thesis

• Did we finally capture the full notion of computability?

- We can never prove that we have done so
- Requires an equivalence between a formal definition and an intuitive understanding
- But, it turns out that partial recursive functions, Lambda functions, and Turing Machines are all equivalent!

Church-Turing Thesis

A function is computable iff it is Turing-computable, i.e., there is an equivalent Turing Machine.

Aside: Enumerating Turing Machines

- There is a computable bijection between the set of Turing Machines and $\ensuremath{\mathbb{N}}$
 - We can "translate" between Turing Machines and the natural numbers
 - Translation is done in a computable manner in both directions
 - The encoding of a Turing Machine is known as its index
- Notation: φ_e
 - Turing Machine with index e
 - Or, the *e*th Turing Machine

Computable Functions

Recursion Theorem

Let f be a total computable function. Then there is an index n such that $\varphi_n=\varphi_{f(n)}.$

We will use the Recursion Theorem to prove Rice's Theorem.

Let $A \subseteq \mathbb{N}$. For any x and y, if we have that $x \in A$ and $\varphi_x = \varphi_y$ implies that $y \in A$, then A is an **index set**.

Examples:

- Fin = $\{e \mid \mathsf{dom} \ \varphi_e \ < \infty\}$
 - Computable functions with finite domains
- Tot = $\{e \mid \text{dom } \varphi_e = \mathbb{N}\}$
 - Total computable functions

Basically "cherry-picking" computable functions based on what they do (semantic information)

Rice's Theorem shows us that we cannot do this "cherry-picking" in a computable manner

Rice's Theorem

Suppose A is a nontrivial index set, i.e.,

$$\emptyset \subsetneq A \subsetneq \mathbb{N}.$$

Then χ_A is noncomputable.

Recall that for a set A, its characteristic function is defined as:

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

- We will prove by contradiction.
- Suppose A is a nontrivial index set and that χ_A is computable.
- Since $\varnothing \subsetneq A \subsetneq \mathbb{N}$, then we can fix $a \in A$, $b \notin A$.
- Define *f* as follows:

$$f(x) = \begin{cases} a & \chi_A(x) = 0\\ b & \chi_A(x) = 1 \end{cases}$$

- Since we assumed that χ_A is computable, then f is also computable.
- Additionally, since χ_A is a characteristic function, then it must be total. Thus, f is also total.
- Therefore, f is a total computable function.
- By the Recursion Theorem, there is some index n such that $\varphi_n = \varphi_{f(n)}.$

- We have two cases:
 - **1** If $n \in A$, then $f(n) = b \notin A$. But this contradicts our definition of an index set because if $n \in A$ and $\varphi_n = \varphi_b$, then we should have $b \in A$.
 - 2 If n ∉ A, then f(n) = a ∈ A. Again, we have a contradiction of our definition of index sets because if a ∈ A and φ_a = φ_n, then we should have n ∈ A.
- In both cases, we have a contradiction.
- Therefore, our assumption was incorrect and χ_A must be a noncomputable function. ■

Computable and Computably Enumerable Sets

A set is **computable** if its characteristic function is computable.

Examples:

- $A = \{10, 15, 19, 5\}$
- $B = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N} \text{ s.t. } n = 2k\} = \{0, 2, 4, 6, \ldots\}$

A set is **computably enumerable** if there is a computable procedure that outputs all the elements of the set, allowing repeats and does not have to respect an order.

Think of the procedure as an infinitely-printing printer, and the set as its receipt

Example: The Halting Set

- The set $K = \{e \mid \varphi_e(e) \downarrow\}$ is known as the halting set
 - The set of computable functions that halt on its index
- K is noncomputable
- However, K is computably enumerable
 - Step 1: Run one step of $\varphi_0(0)$
 - Step 2: Run another step of $\varphi_0(0),$ and then run two steps of $\varphi_1(1)$
 - Step 3: Run another step of $\varphi_0(0)$ and $\varphi_1(1),$ and then run three steps of $\varphi_2(2)$
 - Step *i*: Run *i* steps of $\varphi_0(0)$ to $\varphi_{i-1}(i-1)$
 - If any of the computations converge at any point, output the index
 - \Rightarrow Dovetailing

Computable vs Computably Enumerable Sets

- Difference is in the waiting time
- Computable Sets
 - We can know whether or not an element is in the set within a finite amount of time
- Computably Enumerable Sets
 - Keep waiting until the element is enumerated
 - If the element is in the set, then it is guaranteed that it will be enumerated at a certain point because the procedure enumerates all elements of the set
 - If the element is not in the set, then we are just waiting for something that will never come

Turing Reductions

- Oracle Turing Machine
 - Turing Machine hooked up to a black box, known as the oracle
 - The oracle knows information about a particular set, say A
 - During computation, the Turing Machine can ask the oracle if a number is in ${\cal A}$
- Notation: φ_e^A
 - eth Turing Machine with oracle A

Let $A, B \subseteq \mathbb{N}$. If there is an index e such that $\varphi_e^B = \chi_A$, then A is **Turing-reducible** to B, denoted by $A \leq_T B$

- We are using answers from χ_B to calculate the answer for χ_A
- In other words, if we know how to solve ${\cal B},$ then we can solve ${\cal A}$
- We are *reducing* the problem from A to B

Let $A, B \subseteq \mathbb{N}$. If $A \leq_T B$ and $B \leq_T A$, then A and B are **Turing** equivalent, denoted by $A \equiv_T B$.

- Turing Equivalence is an equivalence relation
- Thus, you can take the quotient of $\mathcal{P}(\mathbb{N})$ by \equiv_T
 - i.e., partition sets of natural numbers by Turing equivalence
- Each equivalence class ("slice") is known as a Turing degree

Special thank-you to Waseet for his mentorship, and to Professor Katie for making this all happen!