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Probability Background Definitions

σ-fields

Definition

Given a non-empty set Ω, we define a σ-field F on Ω as a collection of
subsets of Ω such that

∅ ∈ F ;

If A ∈ F , then Ac ∈ F ;

If A1,A2, . . . are in F , then A1 ∪ A2 ∪ · · · is in F .

Some commonly used σ-fields are P(N) for discrete random variables and
B(R), the family of Borel sets on R, for continuous set-ups.
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Probability Background Definitions

Probability Measures

Definition

A probability measure P on a σ-field F is a function P : F → [0, 1] such
that

P(Ω) = 1

If A1,A2, . . . are pairwise disjoint sets, then

P(A1 ∪ A2 ∪ · · · ) = P(A1) + P(A2) + · · ·

These are the axioms of probability presented in Math 3160.
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Probability Background Definitions

Probability Spaces

Definition

A probability space is a triple (Ω,F ,P) such that:

Ω is any non-empty set

F is a σ-field on Ω

P is a probability measure
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Probability Background Exercises

Basic Probability Exercises

Lemma (Borel-Cantelli)

Let A1,A2, . . . be a sequence of events such that
P(A1) + P(A2) + · · · <∞ and let Bn = An ∪ An+1 ∪ · · · . Then

P(B1 ∩ B2 ∩ · · · ) = 0

.

Proof.

We know limn→∞ P(An) = 0, and that B1,B2, . . . is a contracting series
of events, so that P(B1 ∩ B2 ∩ · · · ) = limn→∞ P(Bn). Since
P(An ∪ An+1 ∪ · · · ) ≤

∑∞
i=n P(Ai ) for all n, it follows

lim
n→∞

P(Bn) = lim
n→∞

P(An ∪ An+1 ∪ · · · ) ≤ lim
n→∞

∞∑
i=n

P(Ai ) = 0.
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Probability Background More Definitions

Random Variables

In Math 3160, we often defined random variables by their densities. For
example, we defined a Gaussian random variable X ∼ N(µ, σ2) by the
density function

fX (x) =
1

σ
√

2π
e

1
2 ( x−µ

σ )
2

.

Here, we will take a more abstract approach.
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Probability Background More Definitions

Random Variables

Definition

Given a σ-field F on Ω, a function X : Ω→ R is F-measurable if

∀B ∈ B(R), X−1(B) ∈ F .

We often write {X ∈ B} in place of X−1(B).

Definition

If (Ω,F ,P) form a probability space, then X is called a random variable.
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Probability Background More Definitions

Random Variables

Example (Bernoulli Random Variable)

We define a Bernoulli random variable X : Ω→ {0, 1} by

P(X = 1) = p; P(X = 0) = 1− p.
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Probability Background More Definitions

Useful Ideas about Random Variables

Definition

The σ-field σ(X ) generated by a random variable X is σ-field generated by
the sets of the form {X ∈ B} for all B ∈ B(R).

Lemma (Doob-Dynkin)

If X is a random variable, then every σ(X )-measurable random variable Y
can be written Y = f (X ) for some Borel function f : R→ R.
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Probability Background More Definitions

Expectation

In 3160, we defined the expectation E (X ) of a random variable X with
density f as

E (X ) =

∫ ∞
−∞

xf (x) dx

provided this integral is absolutely convergent. With our more abstract
definition of a random variable, we will be able to emulate this definition:

Definition

The expectation of a random variable X is defined

E (X ) =

∫
Ω
X dP

provided X is integrable.
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Probability Background Connection to 3160

Expectation

These definitions don’t quite look the same. We will attempt to recover
the formula from 3160:

We start by “pushing” our measure P to the real line, which gives us

E (X ) =

∫
Ω

(X (ω)) dP(ω) =

∫
R
x dPX (x).

With a continuous random variable with density fX ,

PX ([xi , xi+1]) =

∫ xi+1

xi

fX (x) dx .
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Probability Background Connection to 3160

Expectation

If we “differentiate” this expression (using the Radon-Nikodym derivative),
we get

dPX (x) = fX (x) dx .

So, we have

E (X ) =

∫
R
x dPX (x) =

∫
R
xfX (x) dx .
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Conditional Expectation More Definitions

Conditional Expectation on a Discrete RV

Definition

Given a random variable X and a discrete random variable Y , the
conditional expectation of X given Y is a random variable E (X |Y ) such
that

E (X |Y )(ω) = E (X |{Y = yn}) if Y (ω) = yn

for n = 0, 1, 2, . . . .

Arora (UConn) Basic Stochastic Processes DRP 12/09/2020 16 / 43



Conditional Expectation More Definitions

Conditional Expectation on a Discrete RV

Example

Say we flip three coins, worth 5c, 10c, and 25c, respectively. Let X denote
the total value of the face-up coins. We want to find the conditional
expectation E (X |Y ) given the amount Y shown by just the 5c and 10c
coins.

We see that Y takes on the values 0c, 5c, 10c, and 15c. So, we find each
of the following

E (X |{Y = 0}), E (X |{Y = 5}), E (X |{Y = 10}), E (X |{Y = 15}).

Note for any event B,

E (X |B) =
1

P(B)

∫
B
X dP.
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Conditional Expectation More Definitions

Conditional Expectation on a Discrete RV

So, we get the following result for E (X |Y ):

E (X |Y )(ω) =


12.5c if Y (ω) = 0

17.5c if Y (ω) = 5

22.5c if Y (ω) = 10

27.5c if Y (ω) = 15.
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Conditional Expectation More Definitions

Conditional Expectation on a Random Variable

Definition

Given an integrable random variable X and an arbitrary random variable
Y , the conditional expectation of X given Y is a random variable E (X |Y )
that satisfies the following properties:

1 E (X |Y ) is σ(Y )-measurable

2 For any A ∈ σ(Y ), ∫
A
E (X |Y ) dP =

∫
A
X dP.
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Conditional Expectation More Definitions

Remark

Notice, the definition of E (X |Y ) in both of these cases does not really
depend on Y , rather, on σ(Y ). This leads us to the following, more
general definition:
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Conditional Expectation More Definitions

Conditional Expectation on a σ-field

Definition

Given an integrable random variable X on a probability space (Ω,F ,P)
and a σ-field G ⊂ F , the conditional expectation of X given G is a random
variable E (X |G) that satisfies the following properties:

1 E (X |G) is G-measurable

2 For any A ∈ G, ∫
A
E (X |G) dP =

∫
A
X dP.
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Conditional Expectation More Definitions

Conditional Expectation on a σ-field

We will state these useful properties without proof:

Proposition

Given integrable random variables X and Y and a σ-field G,

1 E (aX + bY |G) = aE (X |G) + bE (Y |G);

2 E (E (X |G)) = E (X );

3 E (XY |G) = XE (Y |G) if X is G-measurable;

4 E (X |G) = E (X ) if X is independent of G;

5 E (E (X |G)|H) = E (X |H) if H ⊂ G;

6 if X ≥ 0, then E (X |G) ≥ 0.
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Conditional Expectation More Definitions

Moving on...

These definitions and properties will be central as we move into our
discussion of martingales.

Arora (UConn) Basic Stochastic Processes DRP 12/09/2020 23 / 43



Martingales

Outline

1 Probability Background

2 Conditional Expectation

3 Martingales

Arora (UConn) Basic Stochastic Processes DRP 12/09/2020 24 / 43



Martingales Definitions

Martingale Basics

Definition

Given a probability space (Ω,F ,P), a filtration is a family of σ-fields {Fn}
such that

F1 ⊂ F2 ⊂ · · · ⊂ F .

We can think of Fn as the set of events we can measure up to time n.

Definition

A sequence of random variables X1,X2, . . . is adapted to a filtration
F1,F2, . . . if Xn is Fn-measurable.
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Martingales Definitions

Martingale Basics

Definition

A martingale on (Ω,F ,Fn,P) is a collection of random variables {Xn}
such that

1 Xn is integrable for all n;

2 X1,X2, . . . is adapted to F1,F2, . . . ;

3 E (Xn+1|Fn) = Xn

This last point tells us the following: what will happen at time t = n + 1
given all that has happened at t = 0, . . . , n only depends on time t = n.
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Martingales Properties

Some Interesting Things about Martingales

Proposition

Given a martingale X1,X2, . . . adapted to a filtration F1,F2, . . . ,

E (Xn+1|Fn) = E (Xn+1|Xn).
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Martingales Properties

Some Interesting Things about Martingales

Proof.

Since σ(Xn) ⊆ Fn for all n, we have

E (E (Xn+1|Fn)|Xn) = E (Xn+1|Xn)

by the tower property. Also,

E (E (Xn+1|Fn)|Xn) = E (Xn|Xn) = Xn

because we can take out what is known. So,

E (Xn+1|Fn) = Xn = E (Xn+1|Xn).
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Martingales Properties

Some Interesting Things about Martingales

Proposition

If Xn is a martingale with respect to Fn, then

E (X1) = E (X2) = · · · .
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Martingales Properties

Some Interesting Things about Martingales

Proof.

For any n, we have

E (E (Xn+1|Fn)) = E (Xn+1)

by the properties of conditional expectation. Also,

E (E (Xn+1|Fn)) = E (Xn)

as Xn is a martingale with respect to Fn. So,

E (Xn) = E (Xn+1)

for all n.
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Martingales Examples

Examples with Martingales

Problem

Let Xn be a symmetric random walk, that is,

Xn = Y1 + Y2 + · · ·+ Yn,

where Y1,Y2, . . . is a sequence of of independent identically distributed
random variables such that

P{Yn = 1} = P{Yn = −1} =
1

2
.

Show that X 2
n − n is a martingale with respect to the filtration

Fn = σ(Y1, . . . ,Yn).
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Martingales Examples

Examples with Martingales

Proof.

It first needs to be shown that X 2
n − n is integrable for all n. Since

|Xn| = |Y1 + Y2 + · · ·+ Yn| ≤ |Y1|+ |Y2|+ · · ·+ |Yn| < n,

we know that E (|X 2
n − n|) ≤ n2 + n <∞.

Now, since X 2
n − n = (Y1 + Y2 + · · ·+ Yn)2 − n, by the Doob-Dynkin

Lemma X 2
n − n is σ(Y1,Y2, . . . ,Yn)-measurable as it is a function of

Y1,Y2, . . . ,Yn.
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Martingales Examples

Examples with Martingales

We finally want to show

E (X 2
n+1 − (n + 1)|Fn) = X 2

n − n.

Writing the term Xn+1 as Xn + Yn+1, we get

X 2
n+1 − (n + 1) = X 2

n + 2XnYn+1 + Y 2
n+1 − (n + 1), so

E (X 2
n+1 − (n + 1)|Fn) = E (X 2

n + 2XnYn+1 + Y 2
n+1 − (n + 1)|Fn)

= E (X 2
n |Fn) + 2E (XnYn+1|Fn) + E (Y 2

n+1|Fn)− E (n + 1|Fn)

= X 2
n · E (1|Fn) + 2XnE (Yn+1|Fn) + E (Y 2

n+1|Fn)− (n + 1)

= X 2
n + 2XnE (Yn+1) + E (Y 2

n+1)− (n + 1)
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Martingales Examples

Examples with Martingales

A quick calculation shows E (Yn+1) = 0 and E (Y 2
n+1) = 1, so we have

E (X 2
n+1 − (n + 1)|Fn) = X 2

n + 2Xn · 0 + 1− (n + 1)

= X 2
n − n.
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Martingales Examples

Examples with Martingales

Theorem (Optional Stopping Theorem)

If Xn is a martingale and τ a stopping time such that

1 τ <∞
2 Xn is integrable

3 E (Xn1τ>n)→ 0 as n→∞
then E (Xτ ) = E (X1).

Problem

Let Xn be a random walk as in the previous example, and let K be a
positive integer. We define the first hitting time to be

τ = min{n : |Xn| = K}.

Then E (τ) = K 2.
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Martingales Examples

Examples with Martingales

In the previous example, we showed X 2
n − n is a martingale. The first two

conditions of the Optional Stopping Theorem hold. The proof of the third
condition is too lengthy to include here, but it holds as well.
So, we can say

E (X 2
τ − τ) = E (X 2

1 − 1) = E (Y 2
1 − 1) = 0.

By the linearity of expectation,

E (X 2
τ ) = E (τ).

Since Xτ = K , we see E (τ) = E (K 2) = K 2.
This tells us something interesting about gambling with finite capital- you
can’t beat the house!
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Martingales Examples

Examples with Martingales

I wrote a script to verify this result empirically; Here is the plot of the
results:

Arora (UConn) Basic Stochastic Processes DRP 12/09/2020 37 / 43



Martingales Examples

Examples with Martingales

Here is one sample path:
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Martingales Examples

A Gambling Strategy

Problem

This gambling strategy is called “the martingale”. Suppose we flip a coin
and denote the outcomes h1, h2, . . . , where hn can take on the values +1
for heads and −1 for tails. We start by betting $1 on heads. If hn is heads,
we quit. Otherwise, we double our bet and keep playing.

So, if we let an denote our bet for flip n, we have the following strategy:

an =

{
2n−1, if h1 = h2 = · · · = hn−1 = −1

0, otherwise.
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Martingales Examples

A Gambling Strategy

Now, if we let Gn = h1 + 2h2 + · · ·+ 2n−1hn be our winnings at time n,
and τ = min{n : hn = +1}, then we have the following properties:

Gτ∧n is a martingale with respect to σ(h1, h2, · · · , hn)

P{τ <∞} = 1

Gτ = 1

... if we have infinite time and are allowed to go infinitely into debt!
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Martingales Examples

A Gambling Strategy

Proposition

If a gambler plays “the martingale” their expected loss right before the win
is infinite:

E (Gτ−1) = −∞.

Arora (UConn) Basic Stochastic Processes DRP 12/09/2020 41 / 43



Martingales Examples

A Gambling Strategy

Proof.

Clearly, P{τ = n} = 1
2n . Also,

Gτ−1 = h1 + 2h2 + · · ·+ 2τ−2hτ−1

= −1(1 + 2 + · · ·+ 2τ−2)

= 1− 2τ−1.

So, we have

E (Gτ−1) =
∑
n

(1− 2n−1) · 1

2n

=
∑
n

(
1

2n
− 1

2

)
= −∞.

Arora (UConn) Basic Stochastic Processes DRP 12/09/2020 42 / 43



Martingales Examples
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