DPR Topic: Lie Groups/Lie Algebras

Daniel Byrne

December 9, 2020

Daniel Byrne DPR Topic: Lie Groups/Lie Algebras

伺 ト イヨト イヨト

Lie Groups L Algebra Exponential of a Matrix

Section Overview

- Lie Groups
- L Algebra
- Exponential of a Matrix
- 2 Relationships Between Lie Algebras and Lie Groups
 Correspondences Between Lie Algebras and Lie Groups
 Formulas Relating Lie Algebras and Lie Groups

< 同 × I = >

Lie Groups L Algebra Exponential of a Matrix

Definition

A lie group is a smooth differentiable manifold that is also a group

All Lie groups discussed will be matrix Lie groups

(日)

Lie Groups L Algebra Exponential of a Matrix

What is a manifold

A manifold is a space that looks like a Euclidean space when zoomed in close enough

Example

Surface of a sphere: The surface of a sphere appears like Euclidean space on small enough scales

Definition

A Lie Algebra is

- I a finite dimensional real or complex vector space
- **2** endowed with a map $[\cdot, \cdot]$ such that
 - $[\cdot, \cdot]$ is bilinear (linear with respect to both inputs)
 - **2** is "skew symmetric", is antisymmetric so [X, Y] = -[Y, X]
 - satisfies the Jacobi identity
 [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

The map is also called the bracket or the commutator

< ロ > < 同 > < 三 > < 三 >

Basic Definitions Relationships Between Lie Algebras and Lie Groups Lie Groups L Algebra Exponential of a Matrix

Exponential of Matrix

Definition

$$e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$$

Properties

- Converges for all matrices X
- Easily computable if diagonalizable
- Onserves the original definition of the exponential map

< ロ > < 同 > < 三 > < 三 >

Basic Definitions Relationships Between Lie Algebras and Lie Groups Lie Groups L Algebra Exponential of a Matrix

Logarithm of a Matrix

Definition

$$log(X) = \sum_{m=1}^{\infty} (-1)^{m+1} \frac{(X-I)^m}{m}$$

Properties

- Does not always converge
- Iog(e^X) = X when X is diagonizable and all of the eigenvalues are within the unit circle in the complex plane

< ロ > < 同 > < 三 > < 三 >

Correspondences Between Lie Algebras and Lie Groups Formulas Relating Lie Algebras and Lie Groups

< D > < A > < B > < B >

Section Overview

1 Basic Definitions

- Lie Groups
- L Algebra
- Exponential of a Matrix

2 Relationships Between Lie Algebras and Lie Groups

- Correspondences Between Lie Algebras and Lie Groups
- Formulas Relating Lie Algebras and Lie Groups

Correspondences Between Lie Algebras and Lie Groups Formulas Relating Lie Algebras and Lie Groups

イロト イポト イラト イラト

The Lie Algebra of a Matrix Lie Group

Definition

Given a Lie group, G, its Lie algebra is the set of all matrices such that $e^{tX} \in G$ for all real values of t

For this Lie algebra, we use [X,Y]=XY-YX as this Lle bracket.

Theorem

Every Lle group homomorphism gives rise to a Lle algebra homomorphism

< □ > < 同 > < 回 >

Theorem

If g is any finite dimensional real Lie algebra, there exists a connected Lie subgroup G of $GL(n; \mathbb{C})$ whose lie algebra is isomorphic to g

Correspondences Between Lie Algebras and Lie Groups Formulas Relating Lie Algebras and Lie Groups

イロト イポト イヨト イヨト

э

Baker-Campbell-Hausdorff Formula

7

Theorem

For all $n \times n$ matrices X and Y with || X || and || Y || sufficiently small

$$log(e^X e^Y) = X + \int_0^1 g(e^{ad_X} e^{tad_Y})(Y)dt$$

where $g(z) = rac{log(z)}{1 - rac{1}{2}}$ and $ad_X(z) = [X, z]$

< ロ > < 同 > < 三 > < 三 >

Homomorphisms Between Lie Algebras and Lie Groups

Theorem

Let G and H bet Lie matrix groups with Lie algebras \mathfrak{g} and \mathfrak{h} respectively. and let $\phi : \mathfrak{g} \mapsto \mathfrak{h}$ be a Lie algebra homomorphism. If G is simply connected then there exists a unique Lie group homomorphism $\Phi : G \mapsto H$ such that $\Phi(e^X) = e^{\phi(X)} \forall X \in \mathfrak{g}$

イロト イヨト イヨト

For the program I mainly used Brian C Halls Lie Groups, Lie Algebras and Representations