
Learning from Data with Linear Algebra

Gregory Aschenbrenner

University of Connecticut

December 9th, 2020

My Book

Is there a limit to how much we can learn from a data set? If so,
how do we get there?

Outline

1 SVD
2 PCA
3 Norms
4 Numerical Linear Algebra
5 Randomized Linear Algebra
6 Changes in A−1 from changes in A
7 Interlaced Eigenvalues
8 Compressed Sensing and Matrix Completion
9 Fourier Transforms

Important Ideas: The SVD

Definition:

The SVD is defined as follows A = UΣV T . Where U is an
orthogonal n × n matrix, V is an orthogonal m ×m matrix, and
Σ is an n ×m. U holds our left singular vectors, V holds our
right singular vectors and Σ holds our singular values. Note σ2

1
to σ2

r are always nonzero eigenvalues of both AT A and AAT .

Quick example of the SVD

A =

6 2
2 4
7 8

 AAT =

40 20 58
20 20 46
58 46 113

 AT A =

[
89 76
76 84

]

Σ =

12.74916 0
0 3.23402113414883
0 0


U =

−0.44729 0.84570 −0.29104
−0.33090 −0.45880 −0.82462
−0.83092 −0.27253 0.48507


V T =

[
−0.71863 −0.69538
0.69538 −0.71863

]

Important Ideas: Principal Component Analysis

Now that we have the SVD, what can it do?
The notion of PCA is to take the infomation available to us from
the SVD and pick what infomation is important.

The real focus of utilizing PCA is to find the important pieces of
the matrix use these to make determinations about data sets.
In this way PCA can be thought of as unguided learning in
some sense, with only linear algebra guiding us.

Important Ideas: Principal Component Analysis

What is the best rank k matrix, Ak that approximates A?
Using the idea of the SVD we define this matrix
Ak = σ1u1vT

1 + ...+ σkukvT
k . Notice the matrix is composed of k

rank 1 matrices.

Eckart-Young

Thm: If B has rank k then ‖A− B‖ ≥ ‖A− Ak‖

Example of PCA

Using the A in our SVD example, A =

6 2
2 4
7 8

 What is the best

Ak to approximate A? It is Ak = σ1u1vT
1 + ...+ σkukvT

k ! Thus
the best rank 2 matrix that approximates would be

A2 = σ1u1vT
1 + σ2u2vT

2 =

[
12.7492
3.2340

]

(a) PCA on wider spread of data (b) PCA on tightly grouped data

Figure: PCA in two very different data sets

So many norms so little time!

What is a norm?
A norm of a matrix, as we see below, is really a measure of the
size of the elements of the matrix.

Types of norms useful here
Spectral Norm:

‖A‖2 = max
‖Ax‖
‖x‖

= σ1

Forbenius Norm:

‖A‖F =
√
σ2

1 + ...+ σ2
r

Nuclear Norm:
‖A‖N = σ1 + ...+ σr

What happens when our matrix is poorly behaved?

Three main cases: A is square and singular, ill-conditioned, or
simply incredibly massive.
To solve these issues we use a variety of methods, including
interesting concepts such as recusive and dynamic least
squares, Numerical Linear Algebra, Randomized Linear
Algebra, as well as manipulation of the column space’s basis to
yield an easier problem.

Methods we are interested in
Numerical Linear Algebra
Randomized Linear Algebra

Numerical Linear Algebra

Orthogonal or bust!

For our purposes we will utilize iterative techniques from
Numerically Linear Algebra to orthogonalize a matrix of various
sizes.

Methods Used
Arnoldi Iterations
Lanczos Iterations
Conjugate Gradient

Definition:
Krylov Subspace: Given A and b, we can compute
b,Ab, ...An−1b, the combination of these n vectors produce a
nth Krylov Subspace.

Arnoldi Iteration

(a) MATLAB Code (b) Pseudocode

Figure: Implementation of Arnoldi Iterations

Given:

A =

3 2 4
1 6 3
0 0 300



Let q1 =

1
0
0

 = b
‖b‖ we recieve what we expect,

1 0 0
0 1 0
0 0 0



Let q1 =

3
6
π

 = b
‖b‖ yields,

0.4050 −0.1806 −0.8963
0.8100 −0.3838 0.4434
0.4241 0.9056 0.0091



Arnoldi Iterations on vector b and matix A yields QT
k AQk = Hk

where Hk is Hessenberg Matrix
Hessenberg Matrix is special square matrix, that is close to
triangular. Upper Hessenberg has zero entries below
subdiagonal; lower Hessenverg has zero entries above the first
superdiagonal.

Lanczos Iteration

Really is just Arnoldi Iteration for a symmetric matrice. This
simplifies the process.

(a) MATLAB Code (b) Pseudocode

Figure: Implementation of Lanczos Iterations

Conjugate Gradient Iteration

Solves Sx = b when S is positive definite.

(a) MATLAB Code (b) Pseudocode

Figure: Implementation of Conjugate Gradient

Randomized Linear Algebra

Idea:
Make random vector x have one element xk s.t. Ax is a random
sample of the column space of A. Let S be a random sample
matrix with columns composed of x vectors.

Let A and B be arbitary matrices

C = AS and R = ST B and CR = ASST B ≈ AB

Randomized Linear Algebra

How to keep optimize further?
We can use probability! Specifically mean and variance.

S is n by s sampling matrix, with one nonzero value per column.
Let A = [a1a2a3].

1 See that AS = [a1,a2,a3]

s11 0
0 0
0 s32

 =
[
s11a1 s32a3

]
.

Now must choose values of skj , but how?
2 Assign probability pj to all n columns of A, with
p1 + p2 + ...+ pn = 1
3 Choose S columns with replacement (can choose more
than once)

Randomized Linear Algebra

4 If column k of A (row k of B) is choosen multipy both by
1√
spk

5 (col k of A)(row k of B)/spk goes into random product AB

So far just the mean is correct, can we use norms to get a
correct variance?
Yes, but they are technical to derive! (So we won’t)

Mean: E [X] = 1
s AB

Variance: E [‖AB − CR‖2F] = 1
s (C2 − ‖AB‖2F)

Changes in A−1 from changes in A

Easing into it

M = I − uvT → M−1 = I +
uvT

1− vT u

Correction term is rank 1. If vT u = 1 then M−1 does not exist.

V is n × k , U is also n × k

M = In − UV T → M−1 = In + U(Ik − V T U)−1V T

Sherman-Morrison-Woodbury Formula

M−1 = (A− UV T)−1 = A−1 + A−1U(I − V T A−1U)−1V T A−1

Derivatives of A−1

Let B = A + ∆A

B−1 − A−1 = B−1(A− B)A−1 → ∆A−1

∆t = −(A + ∆A)−1 ∆A
∆t A−1

Approaches dA−1

dt = −A−1 dA
dt A−1

Applications
The Kalman Filter, is the updating of dynamic least
squares. Thus even when there is no new data the state
vector x changes with time. Think GPS and the time
between new data and what is happening on the ground.
Quasi-Newton Update Methods, updates the Jacobian
Matrix in the classical Newton Method instead of
recalculating.

Interlacing Eigenvalues

Fundamental Question: How does each λ change as A
changes?
Interesting anwser, as it is matters what time period we are
observing change over. When we take the derivative, dλ

dt we
have minimal problems are the derivative is a linear operator.
But what about λ(A + ∆A)? Turns out this is a very difficult
question to answer.

Let S be changed to S + uuT

We say uuT is positive semidefinite (xT Mx ≥ 0 ∈ Rn). This
addition only increases the value of the eigenvalues, thus the
change in the eigenvalues is λ1 ≥ λ2 ≥ to z1 ≥ z2 ≥

Interlacing Eigenvalues

Each zi of S + uuT is not smaller than λi or greater than λi−1.
This idea forces the relation z1 ≥ λ1 ≥ z2 ≥ λ2 ≥ ≥ zn ≥ λn.

Derivative of an Eigenvalue

Given a time dependent A

We start with formula A(t)x(t) = λ(t)x(t) simply multiply by yT

and use yT x = 1. Yields λ = yT Ax , this the derivative and
cancelling terms yields dλ

dt = yT dA
dt x .

When the change to S is θuuT what happens?

Actually yields the Secular Equation,
1
θ = uT (zI − S)−1u =

∑n
k=1

c2
k

z−λk
. z are the n eigenvalues of

S + θuuT .

zk doesn’t go past λk−1

Compressed Sensing and Matrix Completion

Idea behind Compressed Sensing is taking a sparse signal and
completeing it to its full state from incompleted data

For Compressed Sensing to function properly the basis, V,
must use as few vn as possible. Further the signal must have
another basis, W to represent it. For Compressed Sensing
there must be incoherence of V and W, or entries of V T W are
small. Common choice for V and W is F (Fourier Matrix) and I,
as the entries of F have equal size.

Matrix Completion seeks to take an incomplete matrix A0 and
complete it to A while keeping rank low as possible

More formally seeks to minimize ‖A‖N subject to A = A0 in the
known entries.

Matrix Completion

Say we know K entries in n × n matrix of rank r, can we
perfectly recover the rest of the data?
While it may seem odd, yes we can. Perfect recovery of A is
highly probable! Must be careful as we can force failures.

Fourier Transforms

What is a Fourier Transform?

The reason all of the coefficents have nice formula is due to
orthogonality!

Fourier Transforms

Fourier Transform Matrix F and Discrete Fourier Transform
Matrix Ω

F4 =


1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9



Ω4 =


1 1 1 1
1 −i (−i)2 (−i)3

1 (−i)2 (−i)4 (−i)6

1 (−i)3 (−i)6 (−i)9


FΩ = NI

References

Strang, G. (2019). Linear algebra and learning from data.
Wellesley, MA: Wellesley-Cambridge Press.

