

April 29, 2021

Yasin Balogou

In Mathematics, the **set** is a rudimentary concept. From sets, or **collections of objects**, we can make statements about the objects within them, connections between sets, and even create mappings from one set to another.

Objects are related to classical sets by a clear, crisp sense of membership. For some object x, there are only two possibilities:

 $x \in A$

or

When dealing with the abstract, classical sets serve their purpose. But in the real-world (as we all know too well) there is uncertainty and ambiguity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Fuzzy sets are actually generalizations of classical sets, which are defined by the characteristic function $\chi_A(x)$

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A fuzzy set is a class (collection of sets or objects) with a continuum of membership grades.

Definition

A fuzzy set A (subset of X) is defined as a mapping

 $A:X\to [0,1]$

where A(x) is the membership degree of x to the fuzzy set A. We denote by \mathcal{F} the collection of all fuzzy subsets of X

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Fuzzy sets allow for a robust definition of sets or categories that can handle the obscurity that comes with language and physical systems.

Ex: To what extent are certain car speeds "slow", "average", "fast", etc.?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Fuzzy Sets

Connectives

Definition (Intersection)

Let $A, B \in \mathcal{F}(X)$. The **intersection** of A and B is the fuzzy set C with

$$C(x) = \min \{A(x), B(x)\} = A(x) \land B(x), \forall x \in X.$$

We denote $C = A \wedge B$.

Definition (Union)

Let $A, B \in \mathcal{F}(X)$. The **union** of A and B is the fuzzy set C with

$$C(x) = max \{A(x), B(x)\} = A(x) \lor B(x), \forall x \in X.$$

We denote $C = A \lor B$.

Definition (Complementation)

Let $A \in \mathcal{F}(X)$ be a fuzzy set. The **complement** of A is the fuzzy set where

$$B(x) = 1 - A(x), \forall x \in X$$

Definition (Classical Relation)

A subset $R \subseteq X \times Y$ where X and Y are classical sets, is a classical relation.

Similar to classical sets, a classical relation can be characterized by a function $R: X \times Y \to \{0, 1\}$,

$$R(x,y) = \begin{cases} 1 & \text{if } (x,y) \in R \\ 0 & \text{if } (x,y) \notin R \end{cases}$$

Definition (Fuzzy Relation)

Let X,Y be two classical sets. A mapping $R : X \times Y \rightarrow [0,1]$ is called a **fuzzy relation**. The number $R(x,y) \in [0,1]$ can be interpreted as the degree of relationship between x and y.

If X and Y are finite sets such that $X = \{x_1, x_2, ..., x_n\}$, $Y = \{y_1, y_2, ..., y_n\}$ a fuzzy relation between the two sets can be represented as the following matrix:

$$R = \begin{pmatrix} R(x_1, y_1) & R(x_1, y_2) & \dots & R(x_1, y_n) \\ R(x_2, y_1) & R(x_2, y_2) & \dots & R(x_2, y_n) \\ \dots & \dots & \dots & \dots \\ R(x_m, y_1) & R(x_m, y_2) & \dots & R(x_m, y_n) \end{pmatrix}$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

Let $R \in \mathcal{F}(X \times Y)$ and $S \in \mathcal{F}(Y \times Z)$ be fuzzy relations. Then $R \circ S(x, z) \in \mathcal{F}(X \times Z)$, defined as

$$R \circ S(x,z) = \bigvee_{y \in Y} R(x,y) \wedge S(y,z),$$

is the max-min composition of the fuzzy relations R and S.

Max-Min Compositions

Max-Min Compositions for Finite Sets

Let $X = \{x_1, ..., x_n\}$, $Y = \{y_1, ..., y_m\}$, $Z = \{z_1, ..., z_p\}$ be finite sets. If $R = (r_{ij})_{i=1,...,n,j=1,...,m} \in \mathcal{F}(X \times Y)$ and $S = (s_{jk})_{j=1,...,n,k=1,...,p} \in \mathcal{F}(X \times Y)$ are discrete fuzzy relations then the composition $T = (t_{ik})_{j=1,...,n,k=1,...,p} = R \circ S \in \mathcal{F}(X \times Z)$ is given by

$$t_{ik} = \bigvee_{j=1}^m r_{ij} \wedge s_{jk},$$

$$i = 1, ..., n, k = 1, ..., p$$

Example: If
$$R = \begin{pmatrix} 0.3 & 0.7 & 0.2 \\ 1 & 0 & 0.9 \end{pmatrix}$$
 and $S = \begin{pmatrix} 0.8 & 0.3 \\ 0.1 & 0 \\ 0.5 & 0.6 \end{pmatrix}$ then
 $R \circ S = \begin{pmatrix} 0.3 & 0.3 \\ 0.8 & 0.6 \end{pmatrix}$

Fuzzy logic systems have been used for modelling diagnosis in medicine.

The max-min composition allows for a mapping from a set of patients to a set of symptoms, then from symptoms to a set of diagnoses.[Samuel and Balamurugan, 2012]

Definition

A function $N : [0,1] \rightarrow [0,1]$ is called a negation if N(0) = 1, N(1) = 0and N is non-increasing $(x < y \implies N(x) > N(y))$. A negation is called a **strict negation** if it is strictly decreasing $(x < y \implies N(x) > N(y))$ and continuous. A strict negation is said to be a **strong negation** if N(N(x)) = x.

Triangular Norms and Conorms

Triangular norms and conorms are generalizations of the basic connectives of fuzzy sets.

Definition

Let $T, S : [0, 1]^2 \rightarrow [0, 1]$. Consider the following properties: $T_1 : T(x,1) = x$ (identity) $S_1 : S(x,0) = x$ $T_2 : T(x,y) = T(y,x)$ (commutativity) $S_2 : S(x,y) = S(y,x)$ $T_3 : T(x,T(y,z))=T(T(x,y),z)$ (associativity) $S_3 : S(x,S(y,z))=S(S(x,y),z)$ $T_4 : If x \le u$ and $y \le v$ then $T(x,y) \le T(u,v)$ (monotonicity) $S_4 : If x \le u$ and $y \le v$ then $S(x,y) \le S(u,v)$

A triangular norm (t-norm) is a function $\mathcal{T}:[0,1]^2\to [0,1]$ that satisfies $\mathcal{T}_1-\mathcal{T}_4$

A triangular conorm (t-conorm) is a function $S:[0,1]^2 \rightarrow [0,1]$ that satisfies $S_1 - S_4$

Ex: Gödel, Gougen t-norm and t-conorm

Gödel t-norm, t-conorm, standard negation

 $x \wedge y = \min \{x, y\}$ $x \vee y = \max \{x, y\}$ N(x) = 1 - x

 $T_1:\min\{x,1\} = x$ $S_1 : \max\{x, 0\} = x$ $T_2:\min\{x, y\} = \min\{y, x\}$ $S_2 : \max\{x, y\} = \max\{y, x\}$ $T_3:\min\{x, \min\{y, z\}\} =$ $min\{min\{x, y\}, z\}$ $S_3 : \max\{x, \max\{y, z\}\} =$ $max \{max \{x, y\}, z\}$ T_4 : *If* $x \le u$ and $y \le v$ then $min\{x, y\} < min\{u, v\}$ S_{4} : *If* x < *u* and *y* < *v* then $max \{x, y\} < max \{u, v\}$

Gödel, Gougen t-norm and t-conorm

Gougen t-norm, t-conorm, standard negation

$$xT_G y = x \cdot y$$

$$xS_G y = x + y - xy$$

$$N(x) = 1 - x$$

$$T_1 : x \cdot 1 = x$$

$$S_1 : x + 0 - 0 = x$$

$$T_2 : x \cdot y = y \cdot x$$

$$S_2 : x + y - xy = y + x - yx$$

$$T_3 : x \cdot (yz) = (xy) \cdot z$$

$$S_3 : x + (y + z - yz) - x(y + z - yz) = (x + y - xy) + z - z(x + y - xy)$$

$$T_4 : If x \le u \text{ and } y \le v \text{ then}$$

$$x \cdot y \le u \cdot v$$

$$S_4 : If x \le u \text{ and } y \le v \text{ then}$$

$$x + y - xy \le u + v - uv$$

DeMorgan Triplets

A triplet (S, T, N) is called a **De Morgan triplet** if T is a t-norm, S is a t-conorm, N is a strong negation, and if they fulfill De Morgan's law

$$S(x, y) = N(T(N(x), N(y)))$$

Example 2.15. The minimum, maximum, and standard negation

$$x \wedge y = \min \{x, y\}$$
$$x \vee y = \max \{x, y\}$$
$$N(x) = 1 - x$$

form a De Morgan triplet

Lukasiewicz t-norm, t-conorm, standard negation

 $(x + y - 1) \lor 0$ $(x + y) \land 1$ N(x) = 1 - x

$$N(T(N(x), N(y))) = S(x, y) \leftrightarrow (x + y) \land 1 =$$
$$((1 - x) + (1 - y) - 1) \lor 0 \leftrightarrow \min\{x + y, 1\} = \max\{1 - x - y, 0\}$$

Case 1:
$$1 - x - y < 0 \implies 1 < x + y$$

Case 2: $1 - x - y > 0 \implies 1 > x + y$

A. Samuel and M. Balamurugan (2012)

Fuzzy Max-Min Composition Technique in Medical Diagnosis Applied Mathematical Sciences Vol 6 no 35, p 1741 - 1746

Bede (2013)

Mathematics of Fuzzy Sets and Fuzzy Logic

Springer ISBN 978-3-642-35220-1

The End