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o-Algebras and Measures

A measure on a set is a notion of area or weight of certain subsets
of that set. These subsets must be a part of a o-algebra, which is
the structure required to define measures. There exist weaker
requirements such as algebras or semi-algebras that alone do not
suffice to define measures but are still useful.
A measure p on a g-algebra A is defined as a function
w: A — [0, 00] that satisfies

1. u(@) =0

2. For A C B, u(A) < u(B) (Monotonicity)

3. For a countable collection of sets {A4;} in A,
u(U; A) = 0, il(As) (Additivity)
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Lebesgue Measure, Hausdorff Measure, and More

LM(A) = inf{z |Pi|, A C UPi, P; half open rectangles}

HS (A 1nf{z |Ei|* A C UEZ, |E;| < 0}
HY(A) = lim H§(A)
6—0
Ho(A) =inf{> _|E|*, Ac | JE}

HE(A) = inf(Y " o( B A c B
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Fractal Dimension

We define the Hausdorff dimension of a set A to be
dim(A) = sup({a : HY(A) = o0}) = inf({ar : HY(A) = 0})
Other ways to define dimension include Minkowski dimension and

packing dimension. These other dimensions may bound Hausdorff
dimension.
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Hutchinson's Theorem

Hutchinson's theorem states that given a complete metric space
(X, d) and a family of contractions {f;}/_, on X,

1. There exists a unique non-empty compact set K such that

¢
K = U fi(K)
=1

2. For any probability vector p = (p1, ..., p¢) there exists a unique
probability measure 1, on the attractor K such that

l
Mp = Zpiﬂpfi_l
=1

If p; > 0 for all 7, then supp(up) = K.
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Banach Fixed-Point Theorem

The Banach fixed-point theorem states that for a complete metric
space X and a contraction f, there exists a unique fixed point
z € X such that f(z) = z.

We can make use of this theorem by constructing an appropriate

metric space and contraction which prove the existence and
uniqueness of a fixed point in that space with desired properties.
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Fixed Point Theorem for the First Claim

For the first statement of Hutchinson's theorem, we consider the
space Cpt(X) defined as all compact subsets of X. Since X is
complete, Cpt(X) endowed with the Hausdorff metric dy is a
complete metric space (Blaschke's selection theorem).

It can be shown that the function F' = Ule fi is a contraction on

(Cpt(X),dp) and as such, we can apply the fixed-point theorem to
obtain a point K € Cpt(X) such that K = F(K) = J_, fi(K).
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Proof of Second Claim: Metric Space and Self-Map

We follow a similar process to prove the second claim, this time
using the space P(K) of Borel probability measures on K. This is
a compact metric space when given the dual Lipschitz metric,

L(p,v) = Sup gdp — | gdv

Lip(g

We define a self-map Fj, on P(K) as follows

¢
=Y pwft
i=1

It remains to show that this is a contraction on (P(K), L(p,v))
and to prove the final note about supp(u).
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Proof of Second Claim: Fj, is a Contraction

We first note that for some function g : K — R with Lip(g) <1,
the Lipschitz norm Lip(Zf:1 Pigfi) < rmax. Now,

[ 9dratu) - [ gaFn(v)

12

' / Z pig fidp — / > pigfidv
i=1

< L'P <szgfz> L(,u,,l/) < rmaxL(My V)

i=1

L(Fp(,u), Fp(’/)) = sup
Lip(g)<1

’ / gdFp(p) — ng

Thus, we see that F, is a contraction. We can apply the fixed
point theorem to obtain p, that satisfies yp = Zle piupfifl.
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Support of p, is K

If p; > 0 for all 4, then given a probability measure v € P(X) with
bounded support that satisfies v = Zlepiufi_l, we see that
supp(v) will satisfy

4

supp(v) = | fi(supp(v))

i=1

Since the support of a measure is always closed, we find that
supp(pp) = K from the uniqueness of K.
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The Mass Distribution Principle

The Mass Distribution Principle states that if a set E supports a
Borel measure p where

w(B(z,r)) < Cr®

for all balls B(x,r) and some constant 0 < C' < oo, then
HY(E) > Lpu(E) and thus dim(E) > a.

12/23



Proof of MDP

Consider any cover {U;} of E. We choose {r;} such that r; > |U;|
and {z;} where x; € U;. Then, we recall the assumption to state,

u(Us) < p(B(wi,ri)) < Crft

We let r; approach |U;| to conclude u(U;) < C|U;|“
1 p(Ui oY
Lumy <3 M < Sy

Since {U;} was arbitrary, we conclude H*(E) > H%(E) > fu(E)
and thus that dim(F) > «
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Frostman's Lemma

Frostman's Lemma states that for a gauge function ¢ and a
compact set K C R? with Hausdorff content H% (K) > 0, there

exists a Borel measure 1 on K such that u(K) > H% (K) and for
all balls B, u(B) < Cy6(|B|)
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Trees, Flow, and Conductance

A rooted tree I' is a collection of vertices and edges starting at a
specific root vertex where there exists exactly one path through
edges between any two vertices.

We denote the root vertex oy and for a vertex o, the depth from
the root ||, and the adjacent vertex closer to the root o”.

To each edge 0’0, we assign a positive conductance C(o'0).
We define a flow as a non-negative function f of edges such that

flo'a) =" flo7)

T'=0

A legal flow is one where f(c'0) < C(o’0) for all o.
The norm of a flow is defined as

If11=">_ f(oo)

lol=1
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Example of a Tree
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Cut-Sets and Minimal Cut-Sets

A cut-set is a set of edges II that intersects all paths from the
root. A minimal cut-set is one which has no proper subsets that
are also cut-sets. Cut-sets have important properties. If we
consider a flow f, then

A<D fle)

e€ll

Equality holds when II is a minimal cut-set. For legal flows,

11l <D fle) <Y Cle) == C(I)

e€ll eIl
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Max-Flow Min-Cut Theorem

The previous slide implies,

max ||f|| < min C(II)

legal flows cut sets

The max-flow min-cut theorem claims that equality holds for both
finite and infinite trees, and most importantly that there exists a
flow that attains said maximum value.
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Return to Frostman's Lemma

To apply our knowledge of trees, we must construct an appropriate
tree based on our assumptions.

Fix some integer b > 1 and construct the b-adic tree I'
corresponding to K. Vertices of depth n correspond to b-adic
cubes of generation n that intersect K. Thus, all vertices are
guaranteed to have a parent. We define conductance on I as

C(o'o) = ¢(Vdb™™)

The max-flow min-cut theorem guarantees a maximal flow f for
this conductance.
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[t and extension to u

We first construct a premeasure [ defined as such,
f({all paths through o’c}) = f(o'o)

If we let S denote the collection of all sets of the form

{all paths through o’} and ), then S is a semi-algebra. [ is
additive by the conservation of flow, so it is a premeasure on S.
By the extension theorem for semi-algebras, we can extend [i to
the o-algebra generated by S. Thus, we have constructed a
measure u which satisfies that u(I,) = f(o’c). It remains to show
that it has the desired properties.
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1(B) < Cap(|Bl)

This property follows from the fact that any cube J can be covered
by Cy smaller b-adic cubes, and by the increasing properties of ¢,

Cyq

w(J) <> nls) < Cad(| 7))

i=1
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p(I) = HE(K)

First, we recall the tree I' corresponding to K. We note that any
b-adic cover of K corresponds to a cut-set of I', so

me' mquﬁ Vbl > #S (K) > HE,(K)

e€ll

Thus, applying the max-flow min-cut theorem,

p(K) = |If]| = inf C(IT) > HE(K)
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