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σ-Algebras and Measures

A measure on a set is a notion of area or weight of certain subsets
of that set. These subsets must be a part of a σ-algebra, which is
the structure required to define measures. There exist weaker
requirements such as algebras or semi-algebras that alone do not
suffice to define measures but are still useful.
A measure µ on a σ-algebra A is defined as a function
µ : A → [0,∞] that satisfies

1. µ(∅) = 0

2. For A ⊂ B, µ(A) ≤ µ(B) (Monotonicity)
3. For a countable collection of sets {Ai} in A,

µ(
⋃

iAi) =
∑

i µ(Ai) (Additivity)
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Lebesgue Measure, Hausdorff Measure, and More

L∗n(A) = inf{
∑
i

|Pi|, A ⊂
⋃
i

Pi, Pi half open rectangles}

Hα
δ (A) = inf{

∑
i

|Ei|α, A ⊂
⋃
i

Ei, |Ei| < δ}

Hα(A) = lim
δ→0

Hα
δ (A)

Hα
∞(A) = inf{

∑
i

|Ei|α, A ⊂
⋃
i

Ei}

Hϕ
∞(A) = inf{

∑
i

ϕ(|Ei|), A ⊂
⋃
i

Ei}
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Fractal Dimension

We define the Hausdorff dimension of a set A to be

dim(A) = sup({α : Hα(A) = ∞}) = inf({α : Hα(A) = 0})

Other ways to define dimension include Minkowski dimension and
packing dimension. These other dimensions may bound Hausdorff
dimension.
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Hutchinson’s Theorem
Hutchinson’s theorem states that given a complete metric space
(X, d) and a family of contractions {fi}ℓi=1 on X,

1. There exists a unique non-empty compact set K such that

K =

ℓ⋃
i=1

fi(K)

2. For any probability vector p = (p1, ..., pℓ) there exists a unique
probability measure µp on the attractor K such that

µp =

ℓ∑
i=1

piµpf
−1
i

If pi > 0 for all i, then supp(µp) = K.
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Banach Fixed-Point Theorem

The Banach fixed-point theorem states that for a complete metric
space X and a contraction f , there exists a unique fixed point
z ∈ X such that f(z) = z.

We can make use of this theorem by constructing an appropriate
metric space and contraction which prove the existence and
uniqueness of a fixed point in that space with desired properties.
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Fixed Point Theorem for the First Claim

For the first statement of Hutchinson’s theorem, we consider the
space Cpt(X) defined as all compact subsets of X. Since X is
complete, Cpt(X) endowed with the Hausdorff metric dH is a
complete metric space (Blaschke’s selection theorem).

It can be shown that the function F =
⋃ℓ

i=1 fi is a contraction on
(Cpt(X), dH) and as such, we can apply the fixed-point theorem to
obtain a point K ∈ Cpt(X) such that K = F (K) =

⋃ℓ
i=1 fi(K).
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Proof of Second Claim: Metric Space and Self-Map

We follow a similar process to prove the second claim, this time
using the space P (K) of Borel probability measures on K. This is
a compact metric space when given the dual Lipschitz metric,

L(µ, ν) = sup
Lip(g)≤1

∣∣∣∣∫ gdµ−
∫

gdν

∣∣∣∣
We define a self-map Fp on P (K) as follows

Fp(ν) =
ℓ∑

i=1

piνf
−1
i

It remains to show that this is a contraction on (P (K), L(µ, ν))
and to prove the final note about supp(µ).
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Proof of Second Claim: Fp is a Contraction
We first note that for some function g : K → R with Lip(g) ≤ 1,
the Lipschitz norm Lip(

∑ℓ
i=1 pigfi) ≤ rmax. Now,

L(Fp(µ), Fp(ν)) = sup
Lip(g)≤1

∣∣∣∣∫ gdFp(µ)−
∫

gdFp(ν)

∣∣∣∣
∣∣∣∣∫ gdFp(µ)−

∫
gdFp(ν)

∣∣∣∣ =
∣∣∣∣∣
∫ ℓ∑

i=1

pigfidµ−
∫ ℓ∑

i=1

pigfidν

∣∣∣∣∣
≤ Lip

(
ℓ∑

i=1

pigfi

)
L(µ, ν) ≤ rmaxL(µ, ν)

Thus, we see that Fp is a contraction. We can apply the fixed
point theorem to obtain µp that satisfies µp =

∑ℓ
i=1 piµpf

−1
i .
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Support of µp is K

If pi > 0 for all i, then given a probability measure ν ∈ P (X) with
bounded support that satisfies ν =

∑ℓ
i=1 piνf

−1
i , we see that

supp(ν) will satisfy

supp(ν) =
ℓ⋃

i=1

fi(supp(ν))

Since the support of a measure is always closed, we find that
supp(µp) = K from the uniqueness of K.
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The Mass Distribution Principle

The Mass Distribution Principle states that if a set E supports a
Borel measure µ where

µ(B(x, r)) ≤ Crα

for all balls B(x, r) and some constant 0 < C < ∞, then
Hα(E) ≥ 1

Cµ(E) and thus dim(E) ≥ α.
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Proof of MDP

Consider any cover {Ui} of E. We choose {ri} such that ri > |Ui|
and {xi} where xi ∈ Ui. Then, we recall the assumption to state,

µ(Ui) ≤ µ(B(xi, ri)) ≤ Crαi

We let ri approach |Ui| to conclude µ(Ui) ≤ C|Ui|α

1

C
µ(E) ≤

∑
i

µ(Ui)

C
≤
∑
i

|Ui|α

Since {Ui} was arbitrary, we conclude Hα(E) ≥ Hα
∞(E) ≥ 1

Cµ(E)
and thus that dim(E) ≥ α
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Frostman’s Lemma

Frostman’s Lemma states that for a gauge function ϕ and a
compact set K ⊂ Rd with Hausdorff content Hϕ

∞(K) > 0, there
exists a Borel measure µ on K such that µ(K) ≥ Hϕ

∞(K) and for
all balls B, µ(B) ≤ Cdϕ(|B|)
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Trees, Flow, and Conductance
A rooted tree Γ is a collection of vertices and edges starting at a
specific root vertex where there exists exactly one path through
edges between any two vertices.
We denote the root vertex σ0 and for a vertex σ, the depth from
the root |σ|, and the adjacent vertex closer to the root σ′.
To each edge σ′σ, we assign a positive conductance C(σ′σ).
We define a flow as a non-negative function f of edges such that

f(σ′σ) =
∑
τ ′=σ

f(στ)

A legal flow is one where f(σ′σ) ≤ C(σ′σ) for all σ.
The norm of a flow is defined as

||f || =
∑
|σ|=1

f(σ0σ)
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Example of a Tree
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Cut-Sets and Minimal Cut-Sets

A cut-set is a set of edges Π that intersects all paths from the
root. A minimal cut-set is one which has no proper subsets that
are also cut-sets. Cut-sets have important properties. If we
consider a flow f , then

||f || ≤
∑
e∈Π

f(e)

Equality holds when Π is a minimal cut-set. For legal flows,

||f || ≤
∑
e∈Π

f(e) ≤
∑
e∈Π

C(e) := C(Π)
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Max-Flow Min-Cut Theorem

The previous slide implies,

max
legal flows

||f || ≤ min
cut sets

C(Π)

The max-flow min-cut theorem claims that equality holds for both
finite and infinite trees, and most importantly that there exists a
flow that attains said maximum value.
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Return to Frostman’s Lemma

To apply our knowledge of trees, we must construct an appropriate
tree based on our assumptions.
Fix some integer b > 1 and construct the b-adic tree Γ
corresponding to K. Vertices of depth n correspond to b-adic
cubes of generation n that intersect K. Thus, all vertices are
guaranteed to have a parent. We define conductance on Γ as

C(σ′σ) = ϕ(
√
db−n)

The max-flow min-cut theorem guarantees a maximal flow f for
this conductance.

19/23



µ̃ and extension to µ

We first construct a premeasure µ̃ defined as such,

µ̃({all paths through σ′σ}) = f(σ′σ)

If we let S denote the collection of all sets of the form
{all paths through σ′σ} and ∅, then S is a semi-algebra. µ̃ is
additive by the conservation of flow, so it is a premeasure on S.
By the extension theorem for semi-algebras, we can extend µ̃ to
the σ-algebra generated by S. Thus, we have constructed a
measure µ which satisfies that µ(Iσ) = f(σ′σ). It remains to show
that it has the desired properties.
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µ(B) ≤ Cdϕ(|B|)

This property follows from the fact that any cube J can be covered
by Cd smaller b-adic cubes, and by the increasing properties of ϕ,

µ(J) ≤
Cd∑
i=1

µ(Iσ) ≤ Cdϕ(|J |)
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µ(K) ≥ Hϕ
∞(K)

First, we recall the tree Γ corresponding to K. We note that any
b-adic cover of K corresponds to a cut-set of Γ, so

inf
Π

C(Π) = inf
Π

∑
e∈Π

ϕ(
√
db−|e|) ≥ H̃ϕ

∞(K) ≥ Hϕ
∞(K)

Thus, applying the max-flow min-cut theorem,

µ(K) = ||f || = inf
Π

C(Π) ≥ Hϕ
∞(K)
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