Probability Prelim Exam for Actuarial Students January 2021

Instructions

- (a). The exam is closed book and closed notes.
- (b). Answers must be justified whenever possible in order to earn full credit.
- (c). Points will be deducted for mathematically incorrect statements.
- 1. (10 points) Let $\Omega = 1, 2, 3, 4$ and let $\mathcal{J} = \{\{1\}, \{2\}\}.$
 - (a) (5 points) Describe explicitly the minimum semialgebra that contains \mathcal{J} .
 - (b) (5 points) Describe explicitly the σ -algebra generated by \mathcal{J} .
- 2. (10 points) Consider the probability space $([0,1], \mathcal{B}, P)$, where \mathcal{B} is the Borel σ -algebra on subsets of [0,1] and P is the Lebesgue measure on [0,1]. Find integrable random variables X and Y defined on the probability space such that P(X > Y) > 0.5 and E[X] < E[Y].
- 3. (10 points) Let X be a standard Gaussian random variable. Show that for any $\alpha > 0$,

$$P(|X| \ge \alpha) \le \frac{2}{1 + \alpha^2}$$

- 4. (10 points) Find two standard Gaussian random variables X and Y such that X and Y are not independent, and Cov(X, Y) = 0.
- 5. (10 points) Let X_1, X_2, \ldots be independent and identically distributed random variables. Let $S_n = X_1 + \cdots + X_n$. Calculate $E[X_1|S_n]$.
- 6. (10 points) Let S_n follow a binomial distribution with parameters n and $\frac{1}{2}$, i.e.,

$$P(S_n = k) = {\binom{n}{k}} \left(\frac{1}{2}\right)^n, \quad k = 0, 1, 2, \dots$$

Find

$$\lim_{n \to \infty} E\left[\frac{n^2 + n}{(S_n + n)^2}\right].$$

7. (10 points) Let $\{r_n\}_{n\geq 1}$ be an infinite independent fair coin tossing. Let

$$\tau_1 = \inf\{n \ge 2 : r_{n-1} = H, r_n = T\}$$

and

$$\tau_2 = \inf\{n \ge 4 : r_{n-3} = H, r_{n-2} = T, r_{n-1} = H, r_n = T\}$$

where H and T denote head and tail outcomes, respectively.

- (a) (5 points points) Compute $E[\tau_1]$.
- (b) (5 points points) Compute $E[\tau_2]$.