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Why are Lie Algebras Important

1 They are the tangent space of Lie groups
1 Lie groups are key to studying higher dimensional geometry
2 Most interesting matrix groups are lie groups

2 You can say a lot about them
1 Very easy to deal with
2 Makes proofs much simpler

3 Curcial to modern Physics
1 Useful in the study of Relativity
2 Useful in the study of Quantum Mechanics
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Definition

1 A Lie algebra is an algebra with a Lie product or bracket
2 A Lie bracket is a function, [∗, ∗] such that the following hold

1 It is antisymmetric so [a, b] = −[b, a]
2 The Jacobi identity holds so [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

Remark

We will assume that all elements that we are dealing with are in the
general linear group. Therefore, they all have non-zero determinants and
hence, inverses. For the Lie algebras that do not staisfy those
assumptions there are ways to map them homomorphically into the
general linear group, called representations.
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Definition

A complex Lie algebra g is reductive if there exists a compact matrix Lie
gorup K such that

g ∼= kC
A complex LIe algebra g is semisimple if it is reductive and the center of
g is simple Therefore, a semisimple Lie algebra is one that only has 1 as a
commutative element and that it is equivalent to the complexification of
the Lie algebra of a compact matrix Lie group.

Remark

These end being the most important ones because any non-semisimple
one can be reduced to the direct sum of its center and a simple Lie
algebra.
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Definition

A Cartan Subalgebra,h, is the center of the group and has the following
three properties

1 For all H1 and H2 in [H1,H2] = 0 where [] is the Lie bracket.

2 If for some X ∈ g we have [H,X ] = 0 for all H ∈ h and X ∈ h

3 For all H ∈ h, adX is diagonalizable

Definition

1 A nonzero element α of h is a root if there exists a nonzero X ∈ g
such that

[H,X ] = 〈α,H〉X

for all H ∈ h. The set of all roots is denoted as R.

2 If α is a root, then the root space, gα is the space of all X in g for
which [H,X ] = 〈α,H〉X for all H in h. A nonzero element of gα is
called a root vector for α
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Definition

For each α ∈ R, we define a linear map sα : h→ h by the formula

sα ∗ H = H − 2
〈α,H〉
〈α, α〉

α

The Weyl Group of R, denoted by W, is the subgroup of GL(h)
generated by the sα’s with α ∈ R

This map is actually just the reflections of the Cartan subalgebra about
the hyperplane orthogonal to α.
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Relationship Amongst Roots

Theorem

For a semisimple Lie algebra, the set R of roots is a finite set of a nonzero
elements of a real inner product space E, and R has the following

1 The roots span E

2 If α ∈ R, then −α ∈ R and the only multiples of α in R are α and
−α

3 If α and β are in R so is sαβ̇ where

sα ∗ β = β − 2
〈α,H〉
〈α, α〉

α

4 For all α and β in R, the quantity

2
〈α, β〉
〈α, α〉

is an integer
Daniel Byrne Semisimple Lie Algebras



Introduction
Definitions

Important Properties
Example

Proof.

Proof of point 2.
We can rewrite any element of the Cartan subalgebra as X = X1 + iX2

with X1,X2 ∈ t Let X = X1 − iX2 Since t is closed under brackets, if
H ∈ t ⊂ k and X ∈ g We have

[H,X ] = [H,X1]− i [H,X ] = [H,X ]

. Because X is a root vector with root α and because of some special
properties of the inner product on this space we have

[H,X ] = [H,X ] = 〈α,H〉X = −〈α,H〉X

. Based on the construction of the inner product, the inner product of α
and H must be imaginary. Therefore, [H,X ] = 〈−α,H〉H, making α a
root as desired.
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Geometry Behind Roots

Proposition

Suppose α and β are roots, α is not a multiple of β, and 〈α, α〉 ≥ 〈β, β〉.
Then oen of the following holds:

1 〈α, β〉 = 0

2 〈α, α〉 = 〈β, β〉 and the angle of α and β is
π

3
or

2π

3

3 〈α, α〉 = 2〈β, β〉 and the angle of α and β is
π

4
or

3π

4

4 〈α, α〉 = 3〈β, β〉 and the angle of α and β is
π

6
or

5π

6
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Proof.

Let us assume that α and β are roots and let m1 = 2
〈α, β〉
〈α, α〉

and

m2 = 2
〈β, α〉
〈ββ〉

. By previous theorem m1 and m2 are integers. By

definition of inner product we have

m1m2 = 4
〈α, β〉2

〈α, α〉〈β, β〉
= 4 cos2 θ

. By our initial assumption we also have that

m2

m1
=
〈α, α
〈β, β〉

≥ 1

. This restricts the values of m1m2 to being 1 2 or 3. If it was 4 then,
they would be multiples of one another, which violates our initial
assumptions. The specific values of the angles follows with some
manipulation from this fact.
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Complete Characterization

Theorem

Every single irreducible root system is isomorphic to exactly one of the
following:

1 An, n ≥ 1

2 Bn, n ≥ 2

3 Cn, n ≥ 3

4 Dn, n ≥ 4

5 One of the exceptional root systems G2, F4, E6, E7, and E8.
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sl(2 : C)

Definition

1 sl(2:C is the matrix group of 2 by 2 matrices with trace 0 and with
the Lie bracket [X ,Y ] = XY − YX

2 The trace of a square matrix is the sum of its eigenvalues.

The basis vectors to choose are the following:

X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
These matrices give us the commutation relations of

1 [H,X ] = 2X

2 [H,Y ] = −2Y

3 [X ,Y ] = H
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