# Metric Space Topology

Tom McGrath

April 29, 2021

## Outline

- Metric spaces
- Sequences
- Open and closed sets
- Completeness, Compactness, Connectedness
- Theorems from calculus

# Metric Spaces

- A metric space is a pair (M, d) where M is a set of points and d is a metric that satisfies the following
  - ▶ Positive definiteness:  $d(x, y) \ge 0$ . Additionally d(x, y) = 0 if and only if x = y
  - Symmetry: d(x, y) = d(y, x)
  - ▶ Triangle inequality:  $d(x,z) \le d(x,y) + d(y,z)$

### **Examples of Metrics**

 $\blacktriangleright$  Consider  $\mathbb R$  and the metric d(x,y) for  $x,y\in \mathbb R$ , d(x,y)=|x-y|

► The Discrete Metric

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

# **Cauchy Sequences**

▶ Definition: Consider a metric space M with the metric d. A sequence of points,  $a_1, a_2, a_3, ... \in M$  denoted  $(a_n)$  is a Cauchy sequence if for each  $\epsilon > 0$  there exists an  $N \in \mathbb{N}$  such that for all  $n, k \in \mathbb{N}$  where  $n, k \ge N$ ,

 $d(a_n, a_k) < \epsilon$ 

## **Convergent Sequences**

▶ Definition: Again consider a metric space M with a metric d. A sequence  $(p_n)$  converges to the limit  $p \in M$  if for each  $\epsilon > 0$ , there exists an  $N \in \mathbb{N}$  such that for all  $n \in \mathbb{N}$  and  $n \ge N$ ,

$$d(p_n, p) < \epsilon$$

Every convergent sequence is a Cauchy sequence, because as the elements of a sequence converge to some point b, they must become closer and closer to one another Definition: A function  $f: M \longrightarrow N$  is continuous if it sends convergent sequences in M to convergent sequences in N. That is, if  $(p_n)$  converges to a limit  $p \in M$ , then the sequence  $(f(p_n))$ converges to the limit  $f(p) \in N$ 

## Closed Sets and Open Sets

Consider a metric space M with metric d. Now consider S, a subset of M. A point  $p \in M$  is a limit of S if there is a sequence of points  $(p_n)$  in S such that  $(p_n)$  converges to p.

- A set is closed if it contains all of its limits
- ▶ A set is open if for each  $x \in S$  there exists an r > 0 such that for  $y \in M$ , if d(x, y) < r, then  $y \in S$
- The complement of a closed set is an open set, and the complement of an open set is a closed set
- ► The topology of a metric space M is the collection T of all open subsets of M

# Clopen Sets

Definition: A set is clopen if it is both closed and open

- Consider a metric space M, Ø ⊂ M. Ø is closed since there are no sequences in Ø, and therefore no limits of sequences in Ø that fall outside of it. As well, Ø is open since there are no elements in the set, and thus no elements that contradict the condition for the set to be open.
- ► The complement of Ø, which is M, must then be both open and closed as well.
- Therefore, M and the empty set are clopen sets

Definition: The following are equivalent conditions for continuity of a function  $f:M\longrightarrow N$  ,

- The closed set condition: The preimage of each closed set in N is a closed set in M
- The open set condition: The preimage of each open set in N is an open set in M

## Important Notions of a Metric Space



- Compactness
- Connectedness

## Completeness

Definition: A metric space  ${\cal M}$  is complete if each Cauchy sequence in  ${\cal M}$  converges to a limit in  ${\cal M}$ 

Definition: A subset A of a metric space M is compact if every sequence  $(a_n)\in A$  has a subsequence  $(a_{n_k})$  that converges to a limit in A

Theorem: Every compact set is bounded

Proof: Consider a compact subset A of a metric space M. Suppose A is not bounded, then for a sequence  $(a_n) \subset A$ , for any  $p \in M$ , we have that  $d(a_n, p) \to \infty$  as n goes toward infinity. Since A is compact we know that there is some  $(a_{n_k}) \subset (a_n)$  such that  $a_{n_k} \to p_0 \in M$ . This contradicts the fact that  $d(a_n, p) \to \infty$ , meaning the set must be bounded.

#### Compactness

Theorem: The closed interval  $[a,b] \in \mathbb{R}$  is compact

Proof: Consider a sequence  $(\boldsymbol{x}_n)$  in  $[\boldsymbol{a},\boldsymbol{b}].$  We can define the set C as,

 $C = \{x \in [a, b] : x_n < x \text{ finitely many times}\}$ 

We can say that  $a \in C$  since there can be no value in the sequence  $(x_n)$  that is less than a. C is not empty. As well, b is an upper bound for C since there are no  $x \in [a, b]$  that are greater than b. There must exist some least upper bound of C,  $c \in [a, b]$ . Suppose there is no subsequence of  $(x_n)$  that converges to c. Then for some r > 0,  $x_n < c + r$  finitely many times, since by our assumption the sequence does not converge to c. Thus,  $c + r \in C$ , a contradiction to the fact that c is the least upper bound of C. Therefore, there must be a subsequence of  $(x_n)$  that converges to c and it follows that [a, b] is compact.

#### Compactness

Theorem: The Cartesian product of two compact sets is compact.

Proof: Consider metric spaces M and N, where  $A \subset M$ ,  $B \subset N$ . Suppose A and B are compact. We can define a sequence  $(a_n, b_n)$ in  $A \times B$ . Since A is compact,  $(a_n)$  has a subsequence  $(a_{n_k})$  that converges to a point  $a \in A$ . As well, since B is compact, the sequence  $(b_{n_k})$  has a subsequence  $(b_{n_{k_l}})$  that converges to a point  $b \in B$ . It follows that,  $(a_{n_{k_l}}, b_{n_{k_l}})$  converges to  $(a, b) \in A \times B$ . Thus, the Cartesian product is compact.

Suppose the Cartesian product of n compact sets is compact. Then the Cartesian product of n + 1 compact sets,

$$[A_1 \times A_2 \times \ldots \times A_n] \times A_{n+1}$$

This is the Cartesian product of two compact sets which we know to be compact. By induction the Cartesian product of  $m \in \mathbb{N}$  compact sets is compact.

Bolzano-Weierstrass Theorem: Every bounded sequence in  $\mathbb{R}^m$  has a convergent subsequence.

Proof: Every bounded sequence in  $\mathbb{R}^m$  can be contained in a box, this box being the Cartesian product of intervals, with  $a_i, b_i \in \mathbb{R}$ ,

$$[a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_m, b_m]$$

We have shown that each [a, b] is compact, and that the Cartesian product of compact sets is compact, and it follows that a box in  $\mathbb{R}^m$  is compact. Thus any sequence in this box must have a convergent subsequence.

#### Compactness

Theorem: If  $f: M \longrightarrow N$  is continuous and A is a compact subset of M, then f(A) is a compact subset of N.

Proof: Suppose  $(b_n)$  is a sequence in  $f(A) = \{f(x) : x \in A\}$ . We can assign each  $b_n \in f(A)$  with an  $a_n \in A$  such that  $f(a_n) = b_n$ . Since A is compact, there is a subsequence  $(a_{n_k})$  that converges to a point  $p \in A$ . It follows that  $f(a_{n_k}) = b_{n_k}$  which converges to  $f(p) \in f(A)$ . Therefore, for each sequence  $(b_n)$  in f(A), there is a subsequence  $(b_{n_k})$  that converges to a point  $f(p) \in f(A)$ . Thus f(A) is compact.

### Connectedness

Definition: Given a metric space M, if M has a proper clopen subset A, that is A is neither M nor  $\emptyset$ , then M is disconnected. M is connected if it is not disconnected, that is, there are no proper clopen subsets of M

If there are proper clopen subsets of a metric space, A and  $A^c,\,$  then we can separate M into nonempty disjoint sets,

 $M = A \dot{\cup} A^c$ 

### Connectedness

Theorem: If M is connected and the function  $f: M \longrightarrow N$  is continuous and surjective, then N is connected.

Proof: Suppose A is a proper clopen subset N. Let  $X = \{m \in M : f(m) \in A\}$ . X is the preimage of A. This preimage X must be clopen since f is continuous. It must be nonempty since f is surjective. It follows that the preimage of  $A^c$  must be nonempty as well, implying that X is neither empty nor the set M. Thus X is a proper clopen subset of M contradicting the fact that M is connected. It must be that a proper clopen subset of N cannot exist, and thus N is connected.

#### Connectedness

Theorem:  $\mathbb{R}$  is connected.

Proof: Suppose we have some nonempty clopen subset  $U\subset\mathbb{R}.$  If we take some  $p\in U,$  we can make a set,

 $X = \{x \in U : \text{the open interval } (p, x) \subset U\}$ 

X is nonempty since U is open. Let s be the supremum of X. If s is finite, s must be the least upper bound of X and s is a limit of U since s is the greatest value such that  $(p, s) \subset U$ . Since U is closed,  $s \in U$ . Since U is open, for some r > 0, we know that the interval  $(s - r, s + r) \subset U$ . Thus,  $s + r \in X$ , contradicting the fact that s is the least upper bound of X. Therefore it must be that X is unbounded above and the interval  $(p, \infty) \subset U$ . Repeating this process with the greatest lower bound gives the result that  $(-\infty, p) \subset U$ . Thus,  $U = \mathbb{R}$ , there are no proper clopen subsets of  $\mathbb{R}$ , and  $\mathbb{R}$  is connected.

## Theorems from Calculus

- Intermediate Value Theorem
- Extreme Value Theorem (Minimum-Maximum)

Intermediate Value Theorem: A continuous function defined on an interval [a, b] achieves all intermediate values. If  $f(a) = \alpha$ ,  $f(b) = \beta$ , and  $\gamma$  is given such that  $\alpha \leq \gamma \leq \beta$ , then there is some  $c \in [a, b]$  such that  $f(c) = \gamma$ .

We can first prove the general intermediate value theorem.

## Intermediate Value Theorem

General Intermediate Value Theorem: Every continuous real valued function defined on a connected domain attains all intermediate values.

Proof: Consider M, a connected metric space, and a function  $f: M \longrightarrow \mathbb{R}$  which is continuous. As well,  $f(a) = \alpha$  and  $f(b) = \beta$ , where  $\alpha < \beta$ . Now suppose there exists some  $\gamma$ ,  $\alpha < \gamma < \beta$ , such that there is no  $x \in M$  where  $f(x) = \gamma$ . Then we can split up M into two open disjoint sets,

$$M = \{x \in M : f(x) < \gamma\} \dot{\cup} \{x \in M : f(x) > \gamma\}$$

This representation contradicts the fact that M is connected, and therefore f(x) must attain  $\gamma$ . That is, the function attains all intermediate values.

## Intermediate Value Theorem

Theorem: The interval [a, b] is connected.

Proof: Define a function  $f : \mathbb{R} \longrightarrow [a, b]$  as follows,

$$f(x) = \begin{cases} a, & x \le a \\ x, & a < x < b \\ b, & x \ge b \end{cases}$$

This is a surjective continuous function from  $\mathbb{R}$  to a closed interval  $[a,b] \subset \mathbb{R}$ . We have shown that  $\mathbb{R}$  is connected and from an earlier theorem, this implies that [a,b] is also connected.

We can now prove the Intermediate Value Theorem that we initial presented.

Proof: Apply the General Intermediate Value Theorem to the connected domain [a, b].

Extreme Value Theorem: A continuous function f defined on an interval [a, b] takes on absolute minimum and absolute maximum values, that is for some  $x_0, x_1 \in [a, b]$  and for all  $x \in [a, b]$ ,  $f(x_0) \leq f(x) \leq f(x_1)$ .

## Extreme Value Theorem

We can use some previous theorems to prove the Extreme Value Theorem.

Proof: We have shown that [a, b] is compact, compact sets are bounded, and that the continuous image of a compact set is compact. Therefore a continuous function f defined on [a, b] has bounds m, M such that for all  $x \in [a, b], m \leq f(x) \leq M$ . Let M, m be the supremum and infimum of the set  $\{f(x) : x \in [a, b]\}$ respectively. Thus, there is a sequence  $(x_n) \in [a, b]$  such that  $f(x_n) \to M$ . By compactness, there exists a subsequence  $(x_{n_k}) \to x_1 \in [a, b]$  and  $f(x_{n_k}) \to f(x_1)$ . We also have that  $f(x_{n_1}) \to M$ . Therefore,  $f(x_1) = M$ . By symmetry,  $f(x_0) = m$ for some  $x_0 \in [a, b]$ . Thus, we have for all  $x \in [a, b]$ ,  $f(x_0) < f(x) < f(x_1).$ 

### Textbook

The following is the textbook that we used throughout the program, and where I referenced to complete the proofs in this presentation.

Pugh, Charles C. *Real Mathematical Analysis.* 2nd ed., Springer, 2017.

Thank you for listening to my presentation, and thank you to my mentor Geoff Lindsell and the organizers of the Directed Reading Program