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▶ Metric spaces
▶ Sequences
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▶ Theorems from calculus
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Metric Spaces

▶ A metric space is a pair (M,d) where M is a set of points
and d is a metric that satisfies the following
▶ Positive definiteness: d(x, y) ≥ 0. Additionally d(x, y) = 0 if

and only if x = y
▶ Symmetry: d(x, y) = d(y, x)
▶ Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)
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Examples of Metrics

▶ Consider R and the metric d(x, y) for x, y ∈ R,
d(x, y) = |x− y|

▶ The Discrete Metric

d(x, y) =

{
1 x ̸= y

0 x = y
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Cauchy Sequences

▶ Definition: Consider a metric space M with the metric d. A
sequence of points, a1, a2, a3, ... ∈ M denoted (an) is a
Cauchy sequence if for each ϵ > 0 there exists an N ∈ N such
that for all n, k ∈ N where n, k ≥ N ,

d(an, ak) < ϵ

5/30



Convergent Sequences

▶ Definition: Again consider a metric space M with a metric d.
A sequence (pn) converges to the limit p ∈ M if for each
ϵ > 0, there exists an N ∈ N such that for all n ∈ N and
n ≥ N ,

d(pn, p) < ϵ

▶ Every convergent sequence is a Cauchy sequence, because as
the elements of a sequence converge to some point b, they
must become closer and closer to one another
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Continuity - Sequences

Definition: A function f : M −→ N is continuous if it sends
convergent sequences in M to convergent sequences in N . That
is, if (pn) converges to a limit p ∈ M , then the sequence (f(pn))
converges to the limit f(p) ∈ N
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Closed Sets and Open Sets

Consider a metric space M with metric d. Now consider S, a
subset of M . A point p ∈ M is a limit of S if there is a sequence
of points (pn) in S such that (pn) converges to p.
▶ A set is closed if it contains all of its limits
▶ A set is open if for each x ∈ S there exists an r > 0 such that

for y ∈ M , if d(x, y) < r, then y ∈ S

▶ The complement of a closed set is an open set, and the
complement of an open set is a closed set

▶ The topology of a metric space M is the collection T of all
open subsets of M
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Clopen Sets

Definition: A set is clopen if it is both closed and open
▶ Consider a metric space M , ∅ ⊂ M . ∅ is closed since there

are no sequences in ∅, and therefore no limits of sequences in
∅ that fall outside of it. As well, ∅ is open since there are no
elements in the set, and thus no elements that contradict the
condition for the set to be open.

▶ The complement of ∅, which is M , must then be both open
and closed as well.

▶ Therefore, M and the empty set are clopen sets
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Continuity - Sets

Definition: The following are equivalent conditions for continuity of
a function f : M −→ N ,
▶ The closed set condition: The preimage of each closed set in

N is a closed set in M

▶ The open set condition: The preimage of each open set in N
is an open set in M
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Important Notions of a Metric Space

▶ Completeness
▶ Compactness
▶ Connectedness
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Completeness

Definition: A metric space M is complete if each Cauchy sequence
in M converges to a limit in M
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Compactness

Definition: A subset A of a metric space M is compact if every
sequence (an) ∈ A has a subsequence (ank

) that converges to a
limit in A
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Compactness

Theorem: Every compact set is bounded

Proof: Consider a compact subset A of a metric space M .
Suppose A is not bounded, then for a sequence (an) ⊂ A, for any
p ∈ M , we have that d(an, p) → ∞ as n goes toward infinity.
Since A is compact we know that there is some (ank

) ⊂ (an) such
that ank

→ p0 ∈ M . This contradicts the fact that d(an, p) → ∞,
meaning the set must be bounded.
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Compactness
Theorem: The closed interval [a, b] ∈ R is compact

Proof: Consider a sequence (xn) in [a, b]. We can define the set C
as,

C = {x ∈ [a, b] : xn < x finitely many times}

We can say that a ∈ C since there can be no value in the sequence
(xn) that is less than a. C is not empty. As well, b is an upper
bound for C since there are no x ∈ [a, b] that are greater than b.
There must exist some least upper bound of C, c ∈ [a, b]. Suppose
there is no subsequence of (xn) that converges to c. Then for
some r > 0, xn < c+ r finitely many times, since by our
assumption the sequence does not converge to c. Thus, c+ r ∈ C,
a contradiction to the fact that c is the least upper bound of C.
Therefore, there must be a subsequence of (xn) that converges to
c and it follows that [a, b] is compact.
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Compactness
Theorem: The Cartesian product of two compact sets is compact.

Proof: Consider metric spaces M and N , where A ⊂ M , B ⊂ N .
Suppose A and B are compact. We can define a sequence (an, bn)
in A×B. Since A is compact, (an) has a subsequence (ank

) that
converges to a point a ∈ A. As well, since B is compact, the
sequence (bnk

) has a subsequence (bnkl
) that converges to a point

b ∈ B. It follows that, (ankl
, bnkl

) converges to (a, b) ∈ A×B.
Thus, the Cartesian product is compact.

Suppose the Cartesian product of n compact sets is compact.
Then the Cartesian product of n+ 1 compact sets,

[A1 ×A2 × ...×An]×An+1

This is the Cartesian product of two compact sets which we know
to be compact. By induction the Cartesian product of m ∈ N
compact sets is compact.
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Compactness

Bolzano-Weierstrass Theorem: Every bounded sequence in Rm has
a convergent subsequence.

Proof: Every bounded sequence in Rm can be contained in a box,
this box being the Cartesian product of intervals, with ai, bi ∈ R,

[a1, b1]× [a2, b2]× ...× [am, bm]

We have shown that each [a, b] is compact, and that the Cartesian
product of compact sets is compact, and it follows that a box in
Rm is compact. Thus any sequence in this box must have a
convergent subsequence.
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Compactness

Theorem: If f : M −→ N is continuous and A is a compact subset
of M , then f(A) is a compact subset of N .

Proof: Suppose (bn) is a sequence in f(A) = {f(x) : x ∈ A}. We
can assign each bn ∈ f(A) with an an ∈ A such that f(an) = bn.
Since A is compact, there is a subsequence (ank

) that converges to
a point p ∈ A. It follows that f(ank

) = bnk
which converges to

f(p) ∈ f(A). Therefore, for each sequence (bn) in f(A), there is a
subsequence (bnk

) that converges to a point f(p) ∈ f(A). Thus
f(A) is compact.
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Connectedness

Definition: Given a metric space M , if M has a proper clopen
subset A, that is A is neither M nor ∅, then M is disconnected.
M is connected if it is not disconnected, that is, there are no
proper clopen subsets of M

If there are proper clopen subsets of a metric space, A and Ac,
then we can separate M into nonempty disjoint sets,

M = A∪̇Ac
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Connectedness

Theorem: If M is connected and the function f : M −→ N is
continuous and surjective, then N is connected.

Proof: Suppose A is a proper clopen subset N . Let
X = {m ∈ M : f(m) ∈ A}. X is the preimage of A. This
preimage X must be clopen since f is continuous. It must be
nonempty since f is surjective. It follows that the preimage of Ac

must be nonempty as well, implying that X is neither empty nor
the set M . Thus X is a proper clopen subset of M contradicting
the fact that M is connected. It must be that a proper clopen
subset of N cannot exist, and thus N is connected.
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Connectedness
Theorem: R is connected.

Proof: Suppose we have some nonempty clopen subset U ⊂ R. If
we take some p ∈ U , we can make a set,

X = {x ∈ U : the open interval (p, x) ⊂ U}

X is nonempty since U is open. Let s be the supremum of X. If s
is finite, s must be the least upper bound of X and s is a limit of
U since s is the greatest value such that (p, s) ⊂ U . Since U is
closed, s ∈ U . Since U is open, for some r > 0, we know that the
interval (s− r, s+ r) ⊂ U . Thus, s+ r ∈ X, contradicting the
fact that s is the least upper bound of X. Therefore it must be
that X is unbounded above and the interval (p,∞) ⊂ U .
Repeating this process with the greatest lower bound gives the
result that (−∞, p) ⊂ U . Thus, U = R, there are no proper
clopen subsets of R, and R is connected.
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Theorems from Calculus

▶ Intermediate Value Theorem
▶ Extreme Value Theorem (Minimum-Maximum)
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Intermediate Value Theorem

Intermediate Value Theorem: A continuous function defined on an
interval [a, b] achieves all intermediate values. If f(a) = α,
f(b) = β, and γ is given such that α ≤ γ ≤ β, then there is some
c ∈ [a, b] such that f(c) = γ.

We can first prove the general intermediate value theorem.
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Intermediate Value Theorem

General Intermediate Value Theorem: Every continuous real valued
function defined on a connected domain attains all intermediate
values.

Proof: Consider M , a connected metric space, and a function
f : M −→ R which is continuous. As well, f(a) = α and
f(b) = β, where α < β. Now suppose there exists some γ,
α < γ < β, such that there is no x ∈ M where f(x) = γ. Then
we can split up M into two open disjoint sets,

M = {x ∈ M : f(x) < γ}∪̇{x ∈ M : f(x) > γ}

This representation contradicts the fact that M is connected, and
therefore f(x) must attain γ. That is, the function attains all
intermediate values.
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Intermediate Value Theorem

Theorem: The interval [a, b] is connected.

Proof: Define a function f : R −→ [a, b] as follows,

f(x) =


a, x ≤ a

x, a < x < b

b, x ≥ b

This is a surjective continuous function from R to a closed interval
[a, b] ⊂ R. We have shown that R is connected and from an earlier
theorem, this implies that [a, b] is also connected.
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Intermediate Value Theorem

We can now prove the Intermediate Value Theorem that we initial
presented.

Proof: Apply the General Intermediate Value Theorem to the
connected domain [a, b].
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Extreme Value Theorem

Extreme Value Theorem: A continuous function f defined on an
interval [a, b] takes on absolute minimum and absolute maximum
values, that is for some x0, x1 ∈ [a, b] and for all x ∈ [a, b],
f(x0) ≤ f(x) ≤ f(x1).
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Extreme Value Theorem

We can use some previous theorems to prove the Extreme Value
Theorem.

Proof: We have shown that [a, b] is compact, compact sets are
bounded, and that the continuous image of a compact set is
compact. Therefore a continuous function f defined on [a, b] has
bounds m,M such that for all x ∈ [a, b], m ≤ f(x) ≤ M . Let
M,m be the supremum and infimum of the set {f(x) : x ∈ [a, b]}
respectively. Thus, there is a sequence (xn) ∈ [a, b] such that
f(xn) → M . By compactness, there exists a subsequence
(xnk

) → x1 ∈ [a, b] and f(xnk
) → f(x1). We also have that

f(xnk
) → M . Therefore, f(x1) = M . By symmetry, f(x0) = m

for some x0 ∈ [a, b]. Thus, we have for all x ∈ [a, b],
f(x0) ≤ f(x) ≤ f(x1).
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Textbook

The following is the textbook that we used throughout the
program, and where I referenced to complete the proofs in this
presentation.

Pugh, Charles C. Real Mathematical Analysis. 2nd ed., Springer,
2017.
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Thank you for listening to my presentation, and thank you to my
mentor Geoff Lindsell and the organizers of the Directed Reading
Program
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