COMPLEX ANALYSIS PRELIM

JANUARY 2021

Notation and conventions:

- Denote by \mathbb{C} the complex plane and $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ is the open unit disk.
- A region means a nonempty connected open set.
- The terminology *analytic* function and *holomorphic* function may be used interchangeably.

Problem 1. Let f be a nonconstant smooth function on \mathbb{C} such that the set Γ given by $\Gamma = \{z \in \mathbb{C} : |f(z)| = 7\}$ is a smooth simple closed curve in \mathbb{C} . Denote by G the bounded region enclosed by Γ . Assume f is holomorphic in G. Prove that f has at least one zero in G.

Problem 2. Let g be an entire function satisfying

$$\max_{\{|z| \le R\}} |g(z)| \le R^9$$
, for all $R \ge 200$.

Show that g is a polynomial of degree at most 9.

Problem 3. How many zeros counting multiplicities does the function

$$\psi(z) = z^8 - 6e^z + 5$$

have in the region $\{z \in \mathbb{C} : |z| < 2\}$? Prove your assertion.

Problem 4. Let $U = \{re^{i\theta}: 0 < r < 2, -\pi < \theta < \pi/2\}$. Explicitly describe a one-to-one conformal map from U onto the unit disk \mathbb{D} .

Problem 5. Let $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$. For all holomorphic functions h in \mathbb{H} such that h(i) = 0 and |h(z)| < 1 for all $z \in \mathbb{H}$, find the largest possible value of |h(6i)|.

Problem 6. Let $C = \{z \in \mathbb{C} : |z| = 10^5\}$ with the positive direction. Evaluate the integral

$$\frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{z^{2020}}{\prod_{k=1}^{2021} (z-k)} dz.$$

Problem 7. Let f, Γ , and G be given as in Problem 1. Assume in addition that Γ contains no zero of $f' \equiv \partial f/\partial z$. Suppose f has m zeros counting multiplicities in G. How many zeros counting multiplicities does f' have in G? Prove your assertion.