COMPLEX ANALYSIS PRELIM

JANUARY 2021

Notation and conventions:

- Denote by \mathbb{C} the complex plane and $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ is the open unit disk.
- A region means a nonempty connected open set.
- The terminology analytic function and holomorphic function may be used interchangeably.

Problem 1. Let f be a nonconstant smooth function on \mathbb{C} such that the set Γ given by $\Gamma=\{z \in \mathbb{C}:|f(z)|=7\}$ is a smooth simple closed curve in \mathbb{C}. Denote by G the bounded region enclosed by Γ. Assume f is holomorphic in G. Prove that f has at least one zero in G.

Problem 2. Let g be an entire function satisfying

$$
\max _{\{|z| \leq R\}}|g(z)| \leq R^{9}, \quad \text { for all } R \geq 200
$$

Show that g is a polynomial of degree at most 9 .

Problem 3. How many zeros counting multiplicities does the function

$$
\psi(z)=z^{8}-6 e^{z}+5
$$

have in the region $\{z \in \mathbb{C}:|z|<2\}$? Prove your assertion.
Problem 4. Let $U=\left\{r e^{i \theta}: 0<r<2,-\pi<\theta<\pi / 2\right\}$. Explicitly describe a one-to-one conformal map from U onto the unit disk \mathbb{D}.

Problem 5. Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$. For all holomorphic functions h in \mathbb{H} such that $h(i)=0$ and $|h(z)|<1$ for all $z \in \mathbb{H}$, find the largest possible value of $|h(6 i)|$.

Problem 6. Let $\mathcal{C}=\left\{z \in \mathbb{C}:|z|=10^{5}\right\}$ with the positive direction. Evaluate the integral

$$
\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{z^{2020}}{\prod_{k=1}^{2021}(z-k)} d z
$$

Problem 7. Let f, Γ, and G be given as in Problem 1. Assume in addition that Γ contains no zero of $f^{\prime} \equiv \partial f / \partial z$. Suppose f has m zeros counting multiplicities in G. How many zeros counting multiplicities does f^{\prime} have in G ? Prove your assertion.

