Applied Math Prelim August 2021

- 1. Consider the domain \mathbb{R}^3 . Define $u(x) = -\frac{1}{4\pi|x|}$ for $x \in \mathbb{R}^3$. Show that u is a fundamental solution of the Laplace operator Δ , i.e. $\Delta u = \delta$ in distributional sense where δ is the Dirac-delta distribution.
- 2. (2a) Let X be a Hilbert space and $A_n : X \to X$ be a linear bounded compact operator for all $n = 1, 2, \ldots$ Suppose $A_n \to B$ in operator norm for some linear bounded operator $B : X \to X$. Show that B is a compact operator as well.

(2b) Let $\{e_i\}_{i=1}^{\infty}$ be an orthonormal basis in the Hilbert space X. Suppose $B: X \to X$ is a linear bounded operator with $\sum_{j=1}^{\infty} ||Be_j||^2 < \infty$. (This is known as the Hilbert-Schmidt operator). For any $w \in X$, define $A_n: X \to X$ such that $A_n w = \sum_{j=1}^n \langle w, e_j \rangle Be_j$. Show that A_n is a linear bounded compact operator and $A_n \to B$ in operator norm.

(2c) Given $G : (0,1) \times (0,1) \to \mathbb{R}$ satisfying $\int_0^1 \int_0^1 |G(x,y)|^2 dx dy < \infty$. For any $u \in L^2(0,1)$ define $B : L^2(0,1) \to L^2(0,1)$ such that $Bu(x) = \int_0^1 G(x,y)u(y) dy$. Suppose $\{e_i\}_{i=1}^{\infty}$ is an orthonormal basis of L^2 , use the Parseal's relation or otherwise to show $\int_0^1 \int_0^1 |G(x,y)|^2 dx dy = \sum_{j=1}^{\infty} \|Be_j\|^2$. i.e. B is a Hilbert-Schmidt operator.

3. (3a) Find the Green's function G(x, y) for the operator A where

$$Au \equiv u'' - u$$

- with $u(0) = u(\pi) = 0$.
- (3b) Define $T: L^2(0,\pi) \to L^2(0,\pi)$ such that for any $f \in L^2(0,\pi)$,

$$(Tf)(x) = \int_0^\pi G(x,y)f(y)\,dy\;.$$

Show that T is a self-adjoint linear bounded operator. Explain why T is a compact operator (See question (2c)).

- (3c) Explain what spectral theorem is and why it is applicable to T.
- 4. Let $f: D \to Y$ be a mapping from an open set D in a normed linear space X to another normed linear space Y.
 - (4a) State the definition of Fréchet derivative of f.

(4b) Observe that $W \equiv \{w \in C^1[0,1] : w(0) = w(1) = 0\}$ is a Banach space and consider $\mathcal{I} : W \to \mathbb{R}$ such that for any $u \in W$

$$\mathcal{I}(u) = \int_0^1 (\frac{1}{2}{u'}^2 + \frac{1}{2}u^2 - \frac{1}{4}u^4) \, dx \; .$$

Show that \mathcal{I} is Frechet differentiable at any $u \in W$ and find this derivative.

- 5. Let X be a normed linear space.
 - (5a) Define weak convergence and strong convergence in X.
 - (5b) Show that the weak limit is unique.
 - (5c) Show that strong convergence implies weak convergence.
 - (5d) Find a weak convergent sequence which is not strongly convergent.