Loss Models Prelims for Actuarial Students August 23, 2021 MONT 313, 9:00 am - 1:00 pm

Instructions:

- 1. There are five (5) questions here and you are to answer all five. Each question is worth 20 points.
- 2. Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- 3. Please write legibly. Points will be deducted for incoherent, incorrect, and/or irrelevant statements.

Question No. 1:

Let $\{X_i; i = 1, 2, \dots, n\}$ be a series of independent and identically distributed (i.i.d.) random variables, where X_i has the same distribution as a **zero-truncated** binomial distribution $\mathcal{BN}(4, 0.25)$. Define S by the following compound Poisson model

$$S := \sum_{i=1}^{N} X_i = X_1 + X_2 + \dots + X_N$$

with the usual convention that S=0 if N=0, where N follows a Poisson $\mathcal{PN}(2)$ distribution. Assume N and all X_i 's are independent.

- (a) Find the probability function of X_i .
- (b) Calculate the mean and variance of S.
- (c) Calculate the probability that S is no greater than 1, that is, $\Pr(S \leq 1)$.

Note: Please round the final answers to 6 decimal places.

Question No. 2:

Suppose the claim severity X is modeled with its pdf given by

$$f_X(x) = \frac{c}{x^3}$$
, for $1 \le x \le 4$,

and 0 otherwise.

- (a) Calculate the 90% quantile of X ($x_{90\%}$). **Hint**: $x_{90\%}$ is defined as $\Pr(X \le x_{90\%}) = 90\%$.
- (b) Assume there is a deductible of 2 applied to each claim, and denote the after-deductible claim size by Y (i.e. $Y := (X 2)_{+}$). Find the probability density function (pdf) of Y.

Question No. 3:

Suppose you are an actuary interested in recent occurrence of cyber attacks and you have data from companies with insurance coverage for cyber attacks. The observations are X_1, X_2, \ldots, X_n drawn from a random sample with a Bernoulli probability function

$$Pr(X = k) = p^k (1 - p)^{1 - k}, \text{ for } k = 0, 1$$

where p represents the probability that a cyber attack occurs and $0 \le p \le \frac{1}{2}$.

- (a) Derive the method of moment estimator of p, and denote it as \tilde{p} . Comment on the unbiasedness of this estimator.
- (b) Simplify an expression for the mean squared error of \tilde{p} .
- (c) Derive the maximum likelihood estimator of p, and denote it as \hat{p} . Comment on the unbiasedness of this estimator. **Hint**: \tilde{p} is not the same as \hat{p} .
- (d) Find the mean squared error of \hat{p} . Simplify this expression as much as possible.
- (e) Compare the two estimators and state which estimator is preferred. Justify your choice.

Question No. 4:

Insurance policies have deductibles d, maximum covered losses of 15, and ground-up losses x. Twenty observed losses, i = 1, 2, ..., 20, are recorded below:

\overline{i}	d_i	x_i	i	d_i	x_i	i	d_i	x_i	i	d_i	$\overline{x_i}$
1	0	12	6	2	14	11	4	13	16	5	10
2	0	16	7	2	13	12	4	18	17	5	9
3	0	4	8	2	17	13	4	7	18	5	8
4	0	12	9	2	9	14	4	12	19	5	16
5	0	15	10	2	8	15	4	18	20	5	13

- (a) Compute the risk set of each observed ground-up loss amount and estimate the probability of loss exceeding 10 using the Kaplan-Meier method.
- (b) Compute the 95% linear confidence interval of the probability of loss in (a). Explain a disadvantage of this approach and what has been suggested to overcome this drawback?
- (c) If the loss observations are grouped into the intervals (0, 5], (5, 10], and (10, 15], determine the risk set in each interval. Estimate the probability of loss exceeding 10 based on this grouped loss data.
- (d) Explain disadvantage(s) of using grouped data for estimation.

Question No. 5:

Suppose you are evaluating linear models to a dataset with n=500 observations. The table below shows you six different fitted models, with $\log L(\widehat{\theta}; \mathbf{x})$ as the log-likelihood and p as the corresponding number of model parameters.

Model	p	$\log L(\widehat{\theta}; \mathbf{x})$
1	3	-879.43
2	3	-1404.82
3	3	-1407.41
4	4	-876.26
5	5	-866.45
6	9	-865.49

- (a) Define AIC and compute the AIC for each of the fitted models above.
- (b) Define BIC and compute the BIC for each of the fitted models above.
- (c) Discuss the purposes of using information criteria for model selection.
- (d) Compare the two performance measures, AIC and BIC, for model selection.
- (e) Choose the <u>best</u> model among the six fitted models above. Justify your choice.

—— end of exam ——

APPENDIX

A random variable X is said to have a Gamma distribution with scale parameter a>0 if its density has the form

$$f(x) = \frac{a^b x^{b-1} e^{-ax}}{\Gamma(b)}, \text{ for } x > 0.$$

A random variable X is said to be a two-parameter $Pareto(\alpha, \theta)$ if its cumulative distribution function has the form

$$F(x) = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}$$
, for $x > 0$.

Its mean and variance are, respectively,

$$E(x) = \frac{\theta}{\alpha - 1}$$
 and $Var(X) = \frac{\alpha \theta^2}{(\alpha - 1)(\alpha - 2)}$,

provided they exist.