Probability Prelim Exam for Actuarial Students August 2021

Instructions

- (a). The exam is closed book and closed notes.
- (b). Answers must be justified whenever possible in order to earn full credit.
- (c). Points will be deducted for mathematically incorrect statements.
- 1. (10 points) Let Ω be a non-empty set and $\mathscr{F}_1, \mathscr{F}_2, \ldots$ be a sequence of σ -algebras on Ω such that $\mathscr{F}_i \subseteq \mathscr{F}_{i+1}$ for all $i \geq 1$. Prove or disprove (with a counterexample) that $\bigcup_{i=1}^{\infty} \mathscr{F}_i$ is a σ -algebra.
- 2. (10 points) Find random variables X, Y, and Z on a probability space (Ω, \mathscr{F}, P) such that both the following conditions hold:
 - P(X > Y)P(Y > Z)P(Z > X) > 0, and

•
$$E[X] = E[Y] = E[Z] = 1.$$

3. (10 points) Let $n \ge 2$ be an integer and U_1, U_2, \ldots, U_n be independent and uniformly distributed random variables on (0, 1). Let w_1, w_2, \ldots, w_n be positive real numbers. Calculate

$$P(w_1^{U_1} > \max\{w_i^{U_i} : i = 2, 3, \dots, n\}).$$

4. (10 points) Let X_1, X_2, \ldots be a sequence of random variables satisfying $E[|X_n|] \leq 1$ for all n. Suppose that X is a random variable such that $\lim_{n\to\infty} E[|X_n - X|] = 0$. Let $\epsilon > 0$. Prove or disprove that

$$P(|X_n - X| \ge \epsilon \text{ i.o.}) = 0.$$

5. (10 points) Let X_1, X_2, \ldots, X_n be independent and identically distributed Bern(p) (i.e., $P(X_i = 1) = p$ and $P(X_i = 0) = 1 - p$) random variables for some $p \in (0, 1)$. Let $S = X_1 + \cdots + X_n$. Find Var $(X_1|S)$, the conditional variance of X_1 with respect to $\sigma(S)$, defined through

$$Var(X_1|S) = E[(X_1 - E[X_1|S])^2|S].$$

6. (10 points) Let $\{B_t\}_{t\geq 0}$ be a standard Brownian motion. Find the value of c such that

$$B_t^3 - ctB_t$$

is a martingale.

7. (10 points) Let $\{B_t\}_{t\geq 0}$ be a standard Brownian motion. Let $n\geq 2$ be an integer. Find

$$E[B_1|B_n > 0].$$