Instructions and notation:

- (i) Complete all problems. Give full justifications for all answers in the exam booklet.
- (ii) Outer Lebesgue measure on \mathbb{R}^n is denoted by \mathcal{L}^{*n} . Lebesgue measure on \mathbb{R}^n is denoted by \mathcal{L}^n .
- 1. (10 points) Let (X, \mathcal{A}, μ) be a finite measure space such that $\mu(X) > 0$ and let $f : X \to \mathbb{R}$ be an \mathcal{A} -measurable function such that $f(x) \in (a, b)$ for μ -a.e. $x \in X$ where $a, b \in \mathbb{R}, a < b$. Show that

$$a\mu(X) < \int f \, \mathrm{d}\mu < b\mu(X)$$

2. (10 points) Let $f : \mathbb{R}^n \to (0, +\infty)$ be a Lebesgue measurable function with $||f||_{L^1(\mathbb{R}^n)} = 1$. Show that if $E \subset \mathbb{R}^n$ is Lebesgue measurable with $\mathcal{L}^n(E) \in (0, \infty)$, then

$$\int_E \log f(x) \, \mathrm{d}\mathcal{L}^n(x) \le -\mathcal{L}^n(E) \log(\mathcal{L}^n(E)).$$

3. (10 points) Let (X, \mathcal{A}, μ) be a measure space. Let $f_n, f, g_n, g : X \to \mathbb{R}$ be \mathcal{A} -measurable functions such that $f_n \to f, g_n \to g$ in measure. Prove that if for all $n \in \mathbb{N}$,

$$\sup_{x \in X} |f_n(x)| \le 1 \text{ and } \sup_{x \in X} |g_n(x)| \le 1,$$

then $f_n g_n \to fg$ in measure.

4. (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Suppose that there exists some $C \ge 0$ such that

$$|f(x) - f(y)| \le C|x - y|$$
 for all $x, y \in \mathbb{R}$.

- 1. Prove that $\mathcal{L}^{*1}(f(A)) \leq C \mathcal{L}^{*1}(A)$ for all $A \subset \mathbb{R}$.
- 2. Prove that f maps Lebesgue measurable sets to Lebesgue measurable sets.
- 5. (10 points) Let (X, \mathcal{A}, μ) be a σ -finite measure space and let $f : X \to [0, \infty)$ be an \mathcal{A} -measurable function. Prove that

$$\int_X f(x) \, \mathrm{d}\mu(x) = \int_{[0,\infty)} \mu(\{x \in X : f(x) > y\}) \, \mathrm{d}\mathcal{L}^1(y).$$

6. (10 points) Let $f, f_i : \mathbb{R}^n \to \mathbb{R}, i \in \mathbb{N}$, be Lebesgue measurable functions and let $g \in L^1(\mathbb{R})$. Show that if $f_i(x) \ge 0$ for all $i \in \mathbb{N}$ and $x \in \mathbb{R}^n$, $f_i \to f$ pointwise and

$$\int f_i \, \mathrm{d}\mathcal{L}^n \leq \int_i^{2i} g \, \mathrm{d}\mathcal{L}^1 \text{ for all } i \in \mathbb{N},$$

then f(x) = 0 for \mathcal{L}^n -a.e. $x \in \mathbb{R}^n$.

7. (10 points) Let (X, \mathcal{A}, μ) be a measure space and let $f_n, f \in L^1(\mu), n \in \mathbb{N}$, such that $f_n \to f$ in $L^1(\mu)$. Show that if $\sup_{n \in \mathbb{N}} ||f_n||_{L^4(\mu)} < \infty$ then $f \in L^2(\mu)$ and $f_n \to f$ in $L^2(\mu)$.