Some Topics in Algebraic Combinatorics

Hanzhang Yin

December 162021

Outline

1. Introduction to the combinatoric with "coloring" $1 \times n$ rectangles
2. Definition of graphs and walks
3. Counting walks on graphs
4. Probability matrix of a graph

Example Combinatorial Problems

- n -colorings of 1×5 boards.

- Squares are colored with letters.

$$
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
\hline
\end{array}
$$

- Rotating the board 180°, gives a new coloring.

$$
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
\hline
\end{array} \quad \xrightarrow{180^{\circ}} \quad \begin{array}{|l|l|l|l|l|}
\hline \mathrm{E} & \mathrm{D} & \mathrm{C} & \mathrm{~B} & \mathrm{~A} \\
\hline
\end{array}
$$

- We define two colorings are "the same" if rotating one results in the other.
- Special Case

$$
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{~B} & \mathrm{~A} \\
\hline
\end{array}
$$

n-Colorings of 1×5 Board

- Goal: Count the number of unique colorings with 180° flips.

$$
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{n} & \mathrm{n} & \mathrm{n} & \mathrm{n} & \mathrm{n} \\
\hline
\end{array}
$$

$$
n^{5}
$$

$$
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{~B} & \mathrm{~A} \\
\hline
\end{array}
$$

$$
n^{3}
$$

$-n^{5}-n^{3}$ The number of colorings which don't equal their 180° rotation.

$$
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
\hline
\end{array}
$$

(One equivalence class)

- $\frac{1}{2}\left(n^{5}-n^{3}\right)$ (The number of equivalence class of colorings which don't equal their 180° rotation.)

n-Colorings of 1×5 Board (Continued)

- $\frac{1}{2}\left(n^{5}-n^{3}\right)$ (The number of different equivalence classes of n-colorings which don't equal their 180° rotation.)
- n^{3} (The number of different equivalence classes of n-colorings which equal their 180° rotation.)
- $\frac{1}{2}\left(n^{5}-n^{3}\right)+n^{3}$ (The total number of different equivalence classes of n -colorings.)
- Note: This argument can be generalized to n-colorings of $1 \times k$ board.

Multiset

- Given a finite set S and integer $k \geq 0$.
- $\binom{S}{k}$ denotes the set of k-element subsets of S.
- e.g. $S=\{1,2,3\}$ and $k=2$
- $\binom{S}{2}=\{12,13,23\}$

Multiset

- A multiset is a set with repeated elements
- e.g. $\{1,1,2,2,3,3\}$
- $\{1,2,1,3,2,3\}=\{1,1,2,2,3,3\}$
- $\left.\binom{S}{k}\right)$ denotes the set of k-elements multisets on S.
- $S=\{1,2,3\}$ and $k=2$
- $\binom{S}{k}=\{12,13,23\},\left(\binom{S}{k}\right)=\{11,22,33,12,13,23\}$

Graphs

- A (finite) graph G consists of a vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{p}\right\}$ and edges set $E=\left\{e_{1}, \cdots, e_{q}\right\}$ with a function $\psi: E \rightarrow\left(\binom{V}{2}\right)$

Graphs

- A (finite) graph G consists of a vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{p}\right\}$ and edges set $E=\left\{e_{1}, \cdots, e_{q}\right\}$ with a function $\psi: E \rightarrow\left(\binom{V}{2}\right)$

- $V($ vertex $)=\{1,2,3,4,5\}$ and $E(e d g e)=\{e 1, e 2, e 3, e 4, e 5, e 6, e 7, e 8\}$
- $\left.\binom{V}{2}\right)=\{11,22,33,44,55,12,13,14,15,23,24,25,34,35,45\}$

Graphs

- $E(e d g e)=\{e 1, e 2, e 3, e 4, e 5, e 6, e 7, e 8\}$
- $\left.\binom{V}{2}\right)=\{11,22,33,44,55,12,13,14,15,23,24,25,34,35,45\}$
- e.g. $\psi(e 1)=\psi(e 2)=11$ (e1, e2 are called loops)
- $\psi(e 3)=\psi(e 4)=14$ (there is a multiple edge between 1 and 4)

Adjacency Matrix of the graph G

- p is the number of vertices in the graph.
- The adjacency matrix of the graph G is the $p \times p$ matrix $A=A(G)$, whose (i, j)-entry $a_{i j}$ is equal to the number of edges incident to v_{i} and v_{j}.

- $A(G)=\left[\begin{array}{lllll}2 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right]$

Walks

- A walk in G of length ℓ from vertex u to vertex v is a sequence $v_{a_{1}}=u, e_{a_{1}}, v_{a_{2}}, e_{a_{2}}, \cdots, v_{a_{\ell}}, e_{a_{\ell}}, v_{a_{\ell+1}}=v$

- A walk in G of length 1 from vertex 1 to vertex 2 is a sequence $1, e 5,2$
- A walk in G of length 2 from vertex 1 to vertex 2 could be the sequence $1, e 2,1, e 5,2$ and sequence $1, e 1,1, e 5,2$.

Counting Walks

Goal:Count the number of walks from vertex u to vertex v.
Theorem
For any integer $\ell \geq 1$, the (i, j)-entry of the matrix $A(G)^{\ell}$ is eq al to the number of walks from v_{i} to v_{j} in G of length ℓ.
Sketch of proof
Let $A=\left(a_{i j}\right)$. The (i, j)-entry of $A(G)^{\ell}$ is given by

$$
\left(A(G)^{\ell}\right)_{i j}=\sum a_{i_{1}} a_{i_{1} i_{2}} \cdots a_{i_{\ell-1} j}
$$

where the sum ranges over all sequences $\left(i_{1}, \cdots, i_{\ell-1}\right)$

Example

$\rightarrow \ell=2$

- For each sequence of ℓ, vertices starting at i and ending at j, there are $a_{i i}$ walks of length one from vertex i to i and then $a_{i i_{1}}$ walks of length one from a_{i} to $a_{i_{1}}$, and so on, after ℓ steps we arrive at j, then sum over all such sequences

$$
\begin{gathered}
\left(A(G)^{2}\right)_{21}=a_{21} a_{11}+a_{22} a_{21}+a_{23} a_{31}+a_{24} a_{41}+a_{25} a_{51} \\
\left(A(G)^{2}\right)_{21}=2 \cdot 1+0 \cdot 1+0 \cdot 0+0 \cdot 2+1 \cdot 0=2
\end{gathered}
$$

Example (Continued)

$\ell=2$

$$
\begin{gathered}
A(G)^{2}=A(G)=\left[\begin{array}{lllll}
2 & 1 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]^{2}=\left[\begin{array}{lllll}
9 & 2 & 0 & 4 & 3 \\
2 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 \\
4 & 3 & 0 & 5 & 1 \\
3 & 1 & 0 & 1 & 3
\end{array}\right] \\
\left(A(G)^{2}\right)_{21}=2
\end{gathered}
$$

Example (Continued)

- $\ell=2$

$$
\begin{aligned}
A(G)^{2}=A(G)= & {\left[\begin{array}{llll}
2 & 1 & 2 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]^{2}=\left[\begin{array}{llll}
9 & 2 & 4 & 3 \\
2 & 2 & 3 & 1 \\
4 & 3 & 5 & 1 \\
3 & 1 & 1 & 3
\end{array}\right] } \\
& \left(A(G)^{2}\right)_{21}=2
\end{aligned}
$$

$A^{\ell}=U \cdot \operatorname{diag}\left(\lambda_{1}^{\ell}, \ldots, \lambda_{p}^{\ell}\right) U^{-1}$

- An easier way to count the number of walks
- A real symmetric $p \times p$ matrix M has p linearly independent real eigenvectors.

$$
A(G)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

$$
\lambda_{1}=1+\sqrt{2}, \lambda_{2}=-1, \lambda_{3}=1-\sqrt{2}
$$

$A^{\ell}=U \cdot \operatorname{diag}\left(\lambda_{1}^{\ell}, \ldots, \lambda_{p}^{\ell}\right) U^{-1}$

$$
\begin{gathered}
A(G)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
\lambda_{1}=1+\sqrt{2} \\
\lambda_{2}=-1 \\
\lambda_{3}=1-\sqrt{2} \\
v_{1}=(\sqrt{2}, 1,1) \\
v_{2}=(0,-1,1) \\
v_{3}=(-\sqrt{2}, 1,1)
\end{gathered}
$$

$A^{\ell}=U \cdot \operatorname{diag}\left(\lambda_{1}^{\ell}, \ldots, \lambda_{p}^{\ell}\right) U^{-1}$

Goal: Diagonalize A

$$
\begin{gathered}
A(G)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
U=\left[\begin{array}{ccc}
0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{-\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] \\
\operatorname{diag}\left(\lambda_{1}^{\ell}, \ldots, \lambda_{p}^{\ell}\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1-\sqrt{2} & 0 \\
0 & 0 & 1+\sqrt{2}
\end{array}\right]^{\ell} \\
U^{-1}=U^{T}=\left[\begin{array}{ccc}
0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{-\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
\end{gathered}
$$

$A^{\ell}=U \cdot \operatorname{diag}\left(\lambda_{1}^{\ell}, \ldots, \lambda_{p}^{\ell}\right) U^{-1}$

$$
\begin{gathered}
A(G)^{\ell}=\left(U \cdot \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right) \cdot U^{-1}\right)^{\ell} \\
A(G)^{\ell}=\left(U \cdot \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right) \cdot U^{-1}\right) \ldots\left(U \cdot \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right) \cdot U^{-1}\right) \\
A(G)^{\ell}=U \cdot \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)^{\ell} \cdot U^{-1} \\
A(G)^{\ell}=U \cdot \operatorname{diag}\left(\lambda_{1}^{\ell}, \ldots, \lambda_{p}^{\ell}\right) \cdot U^{-1} \\
=\left[\begin{array}{ccc}
0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{-\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1-\sqrt{2} & 0 \\
0 & 0 & 1+\sqrt{2}
\end{array}\right]^{\ell}\left[\begin{array}{ccc}
0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{-\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
\end{gathered}
$$

The complete graph K_{p}

K_{p} is a graph with vertex set $V=\left\{v_{1}, \ldots, v_{p}\right\}$, and one edge between any two distinct vertices.

- K_{p} has p vertices and $\binom{p}{2}=\frac{1}{2} p(p-1)$ edges.
- Example

- $V=\{1,2,3\} . K_{3}$ has 3 vertices and $\binom{3}{2}=\frac{1}{2} 3(3-1)=3$ edges.

Closed walks

- A closed walk of G is a walk that ends where it begins.
- The number of closed walks of length ℓ in K_{p} from some vertex v_{i} to itself is given by

$$
\left(A\left(K_{p}\right)^{\ell}\right)_{i i}=\frac{1}{p}\left((p-1)^{\ell}+(p-1)(-1)^{\ell}\right)
$$

- Example: Complete Graph K_{3}

$$
\begin{aligned}
& \left(A\left(K_{3}\right)^{1}\right)_{i i}=\frac{1}{3}\left((3-1)^{1}+(3-1)(-1)^{1}\right)=0 \\
& \left(A\left(K_{3}\right)^{2}\right)_{i i}=\frac{1}{3}\left((3-1)^{2}+(3-1)(-1)^{2}\right)=2
\end{aligned}
$$

Algebraic Proof

- J denotes the $p \times p$ matrix of all $1^{\prime} s$ and I is the identity matrix.
$-J_{3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right], I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
- $A\left(K_{p}\right)=J-I$
$-A\left(K_{3}\right)=J_{3}-I_{3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]-\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
- Binomial theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Algebraic Proof

$$
\begin{gathered}
A\left(K_{p}\right)^{\ell}=(J-I)^{\ell}=\sum_{k=0}^{\ell}\binom{\ell}{k} J^{k}(-I)^{\ell-k} \\
J^{k}=p^{k-1} J(\text { mathematical induction }) \\
A\left(K_{p}\right)^{\ell}=(J-I)^{\ell}=\sum_{k=1}^{\ell}(-1)^{\ell-k}\binom{\ell}{k} p^{k-1} J+(-1)^{\ell} I
\end{gathered}
$$

Binomial theorem again,

$$
(J-I)^{\ell}=\frac{1}{p}\left((p-1)^{\ell}-(-1)^{\ell}\right) J+(-1)^{\ell} I
$$

Algebraic Proof

$$
\begin{gathered}
A\left(K_{p}\right)_{i j}^{\ell}=\frac{1}{p}\left((p-1)^{\ell}-(-1)^{\ell}\right) \\
A\left(K_{p}\right)_{i i}^{\ell}=\frac{1}{p}\left((p-1)^{\ell}+(p-1)(-1)^{\ell}\right)
\end{gathered}
$$

The total number of walks of length ℓ in K_{p}.

$$
\sum_{i=1}^{p} \sum_{j=1}^{p}\left(A\left(K_{p}\right)^{\ell}\right)_{i j}=p(p-1)^{\ell}
$$

- Note: We will sum over all the walks instead of just closed walks.

Proof:

$$
\begin{gathered}
\left(p^{2}-p\right) A\left(K_{p}\right)_{i j}^{\ell}+p A\left(K_{p}\right)_{i i}^{\ell}= \\
\left(p^{2}-p\right) \frac{1}{p}\left((p-1)^{\ell}-(-1)^{\ell}\right)+p \cdot \frac{1}{p}\left((p-1)^{\ell}+(p-1)(-1)^{\ell}\right)= \\
p(p-1)^{\ell}
\end{gathered}
$$

Probability matrix

Let $M=M(G)$ be the matrix whose rows and columns are indexed by the vertex $\left\{v_{1}, \cdots, v_{p}\right\}$ of G, and whose (u, v)-entry is given by

$$
M_{u v}=\frac{\mu_{u v}}{d_{u}}
$$

$\mu_{u v}$ - the number of edges between u and v.
d_{u} - the number edges incident to u
$M_{u v}$ - the probablity that is one starts at u, then the next step will be to v.

Example

- When $u=2, d_{u}=2$
- When $u=2$ and $v=1, \mu_{u v}=1$
- $(2,1)$-entry is $M_{21}=\frac{\mu_{21}}{d_{2}}=\frac{1}{2}$
- note: $d_{3}=0$ so we can get rid of isolated point 3 .

Example

$$
\begin{aligned}
& M(G)=\left[\begin{array}{llll}
\frac{2}{5} & \frac{1}{5} & \frac{2}{5} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
\frac{2}{3} & 0 & 0 & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right] \\
& A(G)=\left[\begin{array}{llll}
2 & 1 & 2 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Theorem: Let G be a finite graph. Then the probablity matrix $M=M(G)$ is diagonalizable and has only real eigenvalues.

- Let D be the diagonal matrix whose rows and columns are indexed by the vertices of G, with $D_{v v}=\sqrt{d_{v}}$
- Then

$$
\begin{gathered}
\left(D M D^{-1}\right)_{u v}=\sqrt{d_{u}} \cdot \frac{\mu_{u v}}{d_{u}} \cdot \frac{1}{\sqrt{d_{v}}} \\
\left(D M D^{-1}\right)_{u v}=\frac{\mu_{u v}}{\sqrt{d_{u} d_{v}}}
\end{gathered}
$$

- $D M D^{-1}$ is a symmetric matrix.
- M is diagonalizable and has only real eigenvalues.

Thank you

Citation:
 Stanley, Richard, "Topics in Algebraic Combinatorics"

