# Measure Theory and Applications to Probability and Signal Filtering

# Gregory Aschenbrenner

Department of Electrical Engineering/Department of Mathematics University of Connecticut

December 16, 2021

# 1. The downsides of the Riemann Integral

- 2. Outer Measure
- 3. Measure Spaces
- 4. Lebesgue Measure
- 5. Integration
- 6. Probability Measures and Spaces
- 7. Applications to Signal Filtering

# The downsides of the Riemann Integral

• The Riemann Integral only works with bounded functions

- The Riemann Integral only works with bounded functions
- Define  $f:[0,1] \longrightarrow \mathbb{R}$

$$f(x) = \left\{ egin{array}{cc} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{array} 
ight.$$

- The Riemann Integral only works with bounded functions
- Define  $f:[0,1] \longrightarrow \mathbb{R}$

$$f(x) = \left\{ egin{array}{cc} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{array} 
ight.$$

When one uses the definition for Riemann Integrability we find L(f, P, [0, 1]) = 0 and U(f, P, [0, 1]) = 1 which implies f(x) is not Riemann Integrable.

- How can we get the length of an interval?
- $\bullet\,$  Definition: The length L(I) of an open interval I is defined by

$$L(I) = \begin{cases} b-a & \text{if } I = (a, b) \text{ for some } a, b \in \mathbb{R} \text{ with } a \leq b \\ 0 & \text{if } I = \emptyset \\ \infty & \text{if } I = (-\infty, a) \text{ or } I = (a, \infty) \text{ for some } a \in \mathbb{R} \\ \infty & \text{if } I = (-\infty, \infty) \end{cases}$$

### Definition:

The outer measure of |A| of a set  $A \subset \mathbb{R}$  is defined by

$$|A| = inf \left\{ \sum_{k=1}^{\infty} L(I_k) : I_1, I_2, ... ext{ are open intervals such that } A \subset \cup_{k=1}^{\infty} I_k 
ight\}$$

### Definition:

Suppose  $A \subset \mathbb{R}$  then call the collection C of open subsets of  $\mathbb{R}$  an open cover of A if A is contained in the union of all the sets in C. C has a finite subcover of A if A is contained in a finite list of sets in C.

#### Heine-Borel Theorem:

Every open cover of a bounded closed subset of  $\mathbb R$  has a finite subcover.

- Countable subsets of R have outer measure 0!
- Outer Measure preserves order, i.e let
   A and B be subsets of ℝ such that A ⊂ B then |A| ≤ |B|
- Outer Measure is translation invariant! That is if  $t \in \mathbb{R}$  and  $A \subset \mathbb{R}$  then  $t + A = \{ t + a : a \in A \}$  then |t + A| = |A|
- There always exists disjoint subsets of A and B of  $\mathbb R$  such that  $|A \cup B| \neq |A| + |B|$

- On a closed interval,  $a, b \in \mathbb{R}$ ,  $a \leq b$ , then |[a, b]| = b a. Done with Heine-Borel Theorem.
- Every interval in  $\mathbb R$  containing at least two distinct elements is uncountable.
- Originally shown by Georg Cantor, but with a very lofty proof, the proof for this is much simpler.

# $\sigma$ -Algebras

# Definition: $\sigma$ -Algebras

Let X be a set and S be a set of subsets of X. Then S us considered a  $\sigma$ -Algebra if:

- $\emptyset \in \mathcal{S}$
- if  $E \in \mathcal{S}$  then  $X \setminus E \in \mathcal{S}$
- if  $E_1, E_2...$  is a sequence of events in  $\mathcal S$  then  $\cup_{k=1}^{\infty} E_k \in \mathcal S$

# $\sigma\textsc{-Algebras}$ closed under countable intersection

Suppose  ${\mathcal S}$  is a  $\sigma\text{-Algebra on X}.$  Then,

- $X \in S$
- if  $D, E \in S$ , then  $D \cup E \in S$  and  $D \cap E \in S$  and  $D \setminus E \in S$
- if  $E_1, E_2, ...$  is a sequence of events in  $\mathcal S$  then  $\cap_{k=1}^\infty E_k \in \mathcal S$

### Definition: Measurable Spaces and Sets

- A measurable space is simply an ordered pair (X, S) where X is a set and S is a σ-Algebra on X.
- An event in  ${\mathcal S}$  is called an  ${\mathcal S}\text{-measurable}$  set

# **Borel Sets**

#### Smallest $\sigma$ -algebra

If X is a set and A is a set of subsets of X, then the intersection of  $\sigma$ -algebras on X that contain A is also a  $\sigma$ -algebra on X.

### Definition: Borel Set

The smallest  $\sigma$ -algebra on  $\mathbb{R}$  containing all open subsets of  $\mathbb{R}$  is called the collection of Borel subsets of  $\mathbb{R}$ . Any element of this  $\sigma$ -algebra is called a Borel Set.

- A subset  $[-\infty,\infty]$  is called a Borel set
- Every closed subset of  $\mathbb R$  is a Borel set since every closed subset of  $\mathbb R$  is the complement of an open subset of  $\mathbb R$
- Every countable subset of  $\mathbb{R}$  is a Borel set, to see this let a set  $A = x_1, x_2, ...$  then  $B = \bigcup_{k=1}^{\infty} \{x_k\}$  is a Borel set since each  $\{x_k\}$  is closed
- If f : ℝ → ℝ any set of points where f is continuous is the intersection of open sets and thus a Borel set

# Inverses and their Properties

#### Definition: Inverse Images

If  $f: X \longrightarrow Y$  is a function and  $A \subset Y$  then the set  $f^{-1}(A)$  is defined by,

$$f^{-1}(A) = \{x \in X : f(x) \in A\}$$

#### Properties of Inverses

• Suppose  $f: X \longrightarrow Y$  and  $g: Y \longrightarrow W$  are functions, then

$$(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$$
 for every  $A \subset W$ 

- Suppose  $f : X \longrightarrow Y$ , then
  - $f^{-1}(Y \setminus A) = X^{-1}(A)$  for every  $A \subset Y$
  - $f^{-1}(\cup_{A\in\mathcal{A}}(A)) = \cup_{A\in\mathcal{A}}f^{-1}(A)$  for every set  $\mathcal{A}$  of subsets of  $\mathcal{Y}$ )
  - $f^{-1}(\cap_{A \in \mathcal{A}}(A)) = \cap_{A \in \mathcal{A}} f^{-1}(A)$  for every set  $\mathcal{A}$  of subsets of  $\mathcal{Y}$

### Definition: Measurable Functions

Suppose (X, S) is a measurable space then the function  $f : X \longrightarrow \mathbb{R}$  is called S-measurable if  $f^{-1}(B) \in S$  for every Borel set  $B \in \mathbb{R}$ 

# Definition: Borel Measurable Function

Suppose  $X \subset \mathbb{R}$ , a function  $f : X \longrightarrow \mathbb{R}$  is called Borel Measurable if  $f^{-1}(B)$  is a Borel set for every Borel set  $B \subset \mathbb{R}$ 

• Every continuous function is Borel measurable!

# Definition: Measure

Suppose X is a set and S is a  $\sigma$ -algebras on X. A measure on (X, S) is a function  $\mu : S \longrightarrow [0, \infty]$  such that  $\mu(\emptyset) = 0$  and

$$\mu(\cup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k)$$

for every disjoint sequence  $E_1, E_2, ...$  of sets in  $\mathcal{S}$ 

# Definition: Measure Space

A measure space is the ordered triple  $(X, S, \mu)$  where X is a set S is a  $\sigma$ -algebras on X, and  $\mu$  is a measure on (X, S)

# Properties of Measure

- Measure preserves order,  $(D \subset E)$  then  $\mu(D) \leq \mu(E)$
- $(X, S, \mu)$  is a measure space and  $E_1, E_2, ... \in S$ . Then,  $\mu(\cup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} \mu(E_k)$
- $\mu(D \cup E) = \mu(D) + \mu(E) \mu(D \cap E), \ \mu(D \cap E) \le \infty$

# Connection Between Outer Measure and Lebesgue Measure

#### Outer Measure and Lebesgue Measure

Outer measure is a measure on  $(\mathbb{R}, \mathcal{B})$  where  $\mathcal{B}$  is a  $\sigma$ -algebra of Borel subsets of  $\mathbb{R}$ 

# Definition: Lebesgue Measure

Lebesgue measure is the measure on  $(\mathbb{R}, \mathcal{B})$  where  $\mathcal{B}$  is the  $\sigma$ -algebra that assigns each Borel set to its outer measure.

### Definition: Lebesgue Measurable Set

A set  $A \subset \mathbb{R}$  is called Lebesgue measurable if there exists a Borel set  $B \subset A$  such that  $|A \setminus B| = 0$  is the measure on  $(\mathbb{R}, \mathcal{B})$  where  $\mathcal{B}$  is the  $\sigma$ -algebra that assigns each Borel set to its outer measure.

# Convergence of Measurable Functions

# Definition: Pointwise and Uniform Convergence

Let X be a set with  $f_1, f_2, ...$  being a sequence of functions from X to  $\mathbb{R}$  and f is a function from X to  $\mathbb{R}$ .

- The sequence  $f_1, f_2, ...$  converges pointwise on X to f if  $\lim_{k \to \infty} f_k(x) = f(x)$
- The sequence  $f_1, f_2, ...$  converges uniformly on X to f if for every  $\epsilon > 0$  there exists a  $n \in \mathbb{Z}^+$  such that  $|f_k(x) f(x)| < \epsilon$  for all integers  $k \ge n$  and all  $x \in X$

# Simple Functions and Approximations with them

- A function is simple if it takes only finitely many values
- We can approximate functions by simple functions!
  - Let each  $f_k$  be a simple S-measurable function
  - $|f_k(x)| \le |f_{k+1}(x)| \le |f(x)|$  for all  $k \in \mathbb{Z}^+$  and all  $x \in X$
  - $\lim_{k \to \infty} f_k(x) = f(x)$  for every  $x \in X$
  - $f_1, f_2, ...$  converges uniformly on X to f if f is bounded!

# Integral in terms of simple functions

Let  $(X, \mathcal{S}, \mu)$  be a measure space and  $f : X \longrightarrow [0, \infty]$  is  $\mathcal{S}$ -measurable, then

$$\int \mathit{fd}\mu = \mathit{sup}\{\int \mathit{sd}\mu : \mathsf{s simple}_{0 \leq \mathit{s} \leq \mathit{f}}\}$$

Suppose  $(X, \mathcal{S}, \mu)$  is measure space and  $f, g: X \longrightarrow [0, \infty]$  are  $\mathcal{S}$ -measurable functions

• Integration preserves order! s.t  $f(x) \leq g(x)$  for all  $x \in X$  then  $\int f d\mu \leq \int g d\mu$ 

• Additivity, 
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$

- Can break function,  $X \longrightarrow [-\infty, \infty]$ , into its positive and negative regions and take difference to integrate real valued functions
- Homogeneous,  $\int c f d\mu = c \int f d\mu$
- Absolute Value,  $|\int f d\mu| = \int |f| d\mu$

### What is a probability measure?

- Suppose  $\mathcal{F}$  is a  $\sigma$ -algebra on a set  $\Omega$ , then a probability measure on  $(\Omega, \mathcal{F})$  is a measure P on  $(\Omega, \mathcal{F})$  such that  $P(\Omega) = 1$
- Ω is called the sample space
- An event is an element of  ${\cal F}$
- Given an event A, P(A) is called the probability of A
- If P is the probability measure on  $(\Omega, \mathcal{F})$  then  $(\Omega, \mathcal{F}, P)$  is called the probability space



# Independence and Conditional Probability

### Independent Events

Suppose  $(\Omega, \mathcal{F})$  then  $(\Omega, \mathcal{F}, P)$  is the probability space,

- Two events, A and B, are independent if  $P(A \cap B) = P(A) \cdot P(B)$
- For more than two events,  $P(A_{k_1} \cup A_{k_2} \cup ... A_{k_n}) = P(A_{k_1})...P(A_{k_n})$  for  $k_1,...,k_n$

# Conditional Probability

Suppose  $(\Omega, \mathcal{F}, P)$  is a probability space and B us ab event with P(B) > 0. Can define  $P_B : \mathcal{F} \longrightarrow [0, 1]$  by  $P(A \cap B)$ 

$$P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If  $A \in \mathcal{F}$ , then  $P_B(A)$  is called the conditional probability of A given B.

# **Random Variables**

#### How random is random?

- A random variable can be discrete or continuous, but in either case is a function that maps from  $\Omega \longrightarrow \mathbb{R}$
- A variable that depends on the outcome of a random process



Suppose  $(\Omega, \mathcal{F}, P)$  is a probability space and X is a random variable.

# Probability Distribution

The probability distribution of X is the probability measure  $P_X$  defined on  $(\mathbb{R}, \mathcal{B})$  by  $P_X(B) = P(X \in B) = P(X^{-1}(B))$ 

# Distribution Function

The distribution function of X is the function  $\tilde{X} = P_X((-\infty, s]) = P(X \le s)$ 

# Measure to define probability



### Nice Properties

- Using measure we can define expectation, independence, variance and standard deviation of random variables
- Everything we use already in probability!

- Measure is the foundation of stochastic calculus, Ito's Formula, Stratonovich's Integral, and stochastic flow
- Can create filtering equations (Zakai) based on stochastic calculus
- Kalman-Bucy filtering, i.e continuous Kalman filter!
- What are the limitations of this filtering in this way?

# 

#### Shelton Axler (2019)

Measure, Integration Real Analysis

### Jie Xiong (2008)

An Introduction to Stochastic Filtering Theory

# The End