Abstract Algebra Prelim

Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (10 pts) In the group $G = \operatorname{GL}_2(\mathbf{C})$, let $S = \operatorname{SL}_2(\mathbf{C}) = \{A \in G : \det A = 1\}$ and $N = \mathbf{C}^{\times} I_2 := \{ \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} : z \in \mathbf{C}^{\times} \}$. Both S and N are subgroups of G (no need to show that).
 - (a) (3 pts) Show N is a normal subgroup of G.
 - (b) (3 pts) Show SN = G and $S \cap N = \{\pm I_2\}$.
 - (c) (4 pts) Using (b), prove the quotient groups $\operatorname{GL}_2(\mathbf{C})/(\mathbf{C}^{\times}I_2)$ and $\operatorname{SL}_2(\mathbf{C})/\{\pm I_2\}$ are isomorphic.
- 2. (**10 pts**)
 - (a) (5 pts) Let p < q be primes such that $q \not\equiv 1 \mod p$, and let G be a group of order pq. Prove that G is cyclic.
 - (b) (5 pts) Use semi-direct products to give an example of a non-abelian group of order 21. After describing the group, (i) show it has order 21 and (ii) show two explicit elements do not commute.
- 3. (**10 pts**)
 - (a) (5 pts) Let R be a UFD and $P(X) = X^3 + a_2X^2 + a_1X + a_0 \in R[X]$. Prove that P(X) is irreducible in R[X] if and only if P(X) does not have a root in R.
 - (b) (5 pts) Prove that $X^4 + X^2Y^2 + Y^3$ is irreducible in $\mathbb{C}[X, Y]$.
- 4. (**10 pts**)
 - (a) (4 pts) Let R be a commutative ring. Suppose that $I = (a_1, a_2, \ldots, a_m)$ and $J = (b_1, b_2, \ldots, b_n)$ are ideals in R. Show that the product ideal IJ is the ideal generated by all products $a_i b_j$ for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$.
 - (b) (6 pts) Let $R = \mathbb{Z}[\sqrt{-5}]$, and consider the ideals $I = (2, 1 + \sqrt{-5})$ and $J = (3, 2 + \sqrt{-5})$. Prove that IJ is principal by determining a generator.
- 5. (10 pts) In this problem, A is an $n \times n$ real symmetric matrix, where $n \ge 1$.
 - (a) (4 pts) State (but don't prove) the spectral theorem for the linear mapping $A: \mathbb{R}^n \to \mathbb{R}^n$ and for the dot product (standard inner product) on \mathbb{R}^n .
 - (b) (3 pts) If $A^2 = A$, then show $A\mathbf{v} \perp (\mathbf{v} A\mathbf{v})$ for all $\mathbf{v} \in \mathbf{R}^n$.
 - (c) (3 pts) For v and w in \mathbb{R}^n , set $\langle \mathbf{v}, \mathbf{w} \rangle_A = \mathbf{v} \cdot A\mathbf{w}$. Show $\langle \cdot, \cdot \rangle_A$ is an inner product on \mathbb{R}^n (*i.e.*, $\langle \cdot, \cdot \rangle_A$ is a positive-definite symmetric bilinear form on \mathbb{R}^n) if all the eigenvalues of A are positive. This part is unrelated to part (b).
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) A group isomorphism $f: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \to (\mathbb{Z}/15\mathbb{Z})^{\times}$.
 - (b) (2.5 pts) An integral domain with an explicit irreducible element that is not prime.
 - (c) (2.5 pts) The statement of a theorem in algebra whose proof uses Zorn's lemma.
 - (d) (2.5 pts) An explicit element of the dual space $(\mathbf{R}^3)^*$ that vanishes on the vectors (2, 1, 0) and (0, 1, 2).