TOPOLOGY PRELIM, JANUARY 2022

Convention

- Let A and B be two sets. We denote $A \setminus B = \{x \in A; x \notin B\}$.
- Unless otherwise indicated, the space \mathbb{R}^n and its subsets given below are endowed with the standard topology.
- 1. Let X be a topological space, and let $\{A_{\alpha}\}_{\alpha \in I}$ be a family of subsets in X. Is it always true that

$$\bigcup_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} \overline{A_{\alpha}} ?$$

Here \overline{A} denotes the closure of A in X. Prove your assertion.

- 2. Let $B = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \leq 1\}$ and $S = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 = 1\}$. Does there exist a continuous map $f : B \to S$ such that the restriction $f|_S : S \to S$ is homotopic to the identity map on S? Prove your assertion.
- 3. Let *I* be a collection of subsets of ℝ² which consist of the empty set and the sets of the form ℝ² \ {at most finitely many straight lines}.
 (i) Show that *I* defines a topology on ℝ².
 - (ii) Is $(\mathbb{R}^2, \mathscr{T})$ a Hausdorff space? Prove your assertion.
- 4. Let $E = \{(x, y, z) \in \mathbb{R}^3; z^2 = x^2 + y^2 9\}$ with the subspace topology of \mathbb{R}^3 . Find a universal covering space \tilde{E} and an explicit covering map $p : \tilde{E} \to E$.
- 5. Let \mathscr{M} be the set of 2×2 real matrices with the topology obtained by regarding \mathscr{M} as \mathbb{R}^4 . Let

$$\mathscr{P} = \{ A \in \mathscr{M}; A^T A = I_2 \}$$

endowed with the subspace topology, where A^T denotes the transpose of A, and I_2 is the 2×2 identity matrix.

- (i) Show that \mathscr{P} is compact.
- (ii) Is \mathscr{P} connected? Prove your assertion.
- 6. Let Y be the space \mathbb{RP}^2 with two distinct points removed. Find the fundamental group $\pi_1(Y)$.