Instructions: Solve 6 out of 8 problems. Any results that your responses rely upon must be stated clearly.

Notation:

- The set of all real numbers is denoted by \mathbb{R}.
- The set of all complex numbers is denoted by \mathbb{C}.
- $\mathbb{P}^{k}[a, b]$ is the vector space of all real polynomials $p:[a, b] \rightarrow \mathbb{R}$ of degree k or less.
- Bold font for column vectors, e.g.

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

in which case we say $\mathbf{x} \in \mathbb{R}^{n}\left(\mathbf{x} \in \mathbb{C}^{n}\right)$ if $x_{i} \in \mathbb{R}\left(x_{i} \in \mathbb{C}\right)$ for $1 \leq i \leq n$.

- The transpose of \mathbf{x} is denoted by \mathbf{x}^{\top}.
- Double-bar font for matrices, e.g. \mathbb{A}.

1. Given an odd integer $N \geq 1$, let $x_{n}=2 \pi n / N$ and consider a data set $\left\{\left(x_{n}, f_{n}\right)\right\}_{n=0}^{N-1}$. There is a trigonometric interpolant

$$
\psi(x)=\frac{A_{0}}{2}+\sum_{n=1}^{M}\left(A_{n} \cos (n x)+B_{n} \sin (n x)\right)
$$

satisfying $\psi\left(x_{n}\right)=f_{n}$ for $0 \leq n \leq N-1$, where $N=2 M+1$. If $f(x)=\sin (x) \cos (x+1)$ and $f_{n}=f\left(x_{n}\right)$ for $n=0,1, \ldots, N-1$, prove that $f(x)$ and $\psi(x)$ are identical when N is large enough.
2. Let a certain nonsingular matrix \mathbb{A} of size $n \times n$ have entries in row i and column j denoted by $a_{i, j}$. The only non-zero entries of \mathbb{A} are $a_{i, i}=2$, for $1 \leq i \leq n$, along with $a_{i, i+1}=a_{i+1, i}=-1$, for $1 \leq i \leq n-1$. Given any $\mathbf{x} \in \mathbb{R}^{n}$, denote by $\|\cdot\|$ the Euclidean vector norm, so that $\|\mathbf{x}\|^{2}=\mathbf{x}^{\top} \mathbf{x}$. Let the condition number of \mathbb{A}, say $\kappa(\mathbb{A})$, be defined relative to some matrix norm that is consistent with $\|\cdot\|$. Prove that $\kappa(\mathbb{A}) \rightarrow \infty$ as $n \rightarrow \infty$.
3. An n-point quadrature rule will be found in the form

$$
I(f)=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \approx \int_{-1}^{1} x^{2} f(x) d x
$$

where we require $x_{i} \in[-1,1]$ for $1 \leq i \leq n$ to be distinct points. Derive the quadrature rule of this form with the smallest possible value of n such that

$$
I(f)=\int_{-1}^{1} x^{2} f(x) d x, \forall f \in \mathbb{P}^{3}[-1,1]
$$

4. Write out the composite trapezoidal rule to estimate $\int_{a}^{b} f(x) d x, a<b$, using a partition $x_{j}=a+j \cdot h, j=0,1, \ldots, N$ and $h=(b-a) / N$. Prove that the quadrature error vanishes as $N \rightarrow \infty$, given that f is continuously differentiable everywhere on $[a, b]$.
5. Let $s_{\Delta}:[a, b] \rightarrow \mathbb{R}$ be a cubic spline function relative to the partition $\Delta=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ of $[a, b]$, where $x_{0}=a, x_{N}=b$ and $x_{i-1}<x_{i}$ for $1 \leq i \leq N$. Assume natural spline conditions,
$s_{\Delta}^{\prime \prime}(a)=0=s_{\Delta}^{\prime \prime}(b)$. Also, assume that the third derivative is a uniform constant across intervals, say $s_{\Delta}^{\prime \prime \prime}(x)=C$ on $\left(x_{i-1}, x_{i}\right)$ for $1 \leq i \leq N$ with C independent of i. Find all such $s_{\Delta}(x)$ on $[a, b]$. You must provide justification that your answer is correct, not just state $s_{\Delta}(x)=$ (formula).
6. Given the matrix \mathbb{A} below, calculate an upper-triangular matrix \mathbb{R} for a QR-factorization $\mathbb{A}=\mathbb{Q} \mathbb{R}$ by using Householder matrices. Do not calculate \mathbb{Q}, but formulas for each Householder matrix must be shown, specifying numerical values for all quantities in the formulas.

$$
\mathbb{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 4 \\
1 & 4 \\
1 & 1 \\
1 & 1
\end{array}\right]
$$

7. Denote by $\tilde{\mathbb{P}}^{k}[-1,1]$ the set of all monic polynomials (lead coefficient equals 1) with degree k or less. Given any non-negative integer n and $f \in \tilde{\mathbb{P}}^{n+1}[-1,1]$, let $p \in \mathbb{P}^{n}[-1,1]$ satisfy $p\left(x_{j}\right)=f\left(x_{j}\right)$ with $x_{j}=\cos ((2 j-1) \pi /(2 n+2))$, for $1 \leq j \leq n+1$. We introduce two norms:

$$
\begin{aligned}
\|f\|_{\infty} & :=\max _{-1 \leq x \leq 1}|f(x)| \\
\|f\|_{w} & =\sqrt{\int_{-1}^{1} \frac{|f(x)|^{2}}{\sqrt{1-x^{2}}} d x}
\end{aligned}
$$

Prove that

$$
\|f-p\|_{\infty}<\|f-p\|_{w}
$$

8. Denote by $\|\cdot\|$ the Euclidean vector norm on \mathbb{C}^{n}, and let M_{n} be the space of all complex matrices of size $n \times n$. Given any $\mathbb{A} \in M_{n}$, denote the induced matrix norm by

$$
\|\mathbb{A}\|=\max _{\|\mathbf{x}\|=1}\|\mathbb{A} \mathbf{x}\|
$$

Next, let $\mathbb{A} \in M_{n}$ be a fixed Householder matrix, and assume $\mathbb{B} \in M_{n}$ is given such that $\|\mathbb{B}-\mathbb{A}\|=1 / 3$.
(a) Prove that \mathbb{B} is nonsingular.
(b) If $\mathbb{A} \mathbf{x}=\mathbb{B} \mathbf{y}$, prove that $2\|\mathbf{x}-\mathbf{y}\| \leq\|\mathbf{x}\|$.

