Instructions and notation:

- (i) Give full justifications for all answers in the exam booklet.
- (ii) Lebesgue measure on \mathbb{R}^n is denoted by \mathcal{L}^n and dx corresponds to Lebesgue integration.
- 1. (10 points) Prove or disprove the following statements.
 - 1. If $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ then $\mathcal{L}^n(S^{n-1}) = 0$.
 - 2. Every nonnegative continuous $f \in L^1(\mathbb{R})$ satisfies $\limsup_{x \to +\infty} f(x) \in [0, \infty)$.
 - 3. If $f : (a, b) \to \mathbb{R}$ is differentiable then f' is Lebesgue measurable.
- 2. (10 points) Let (X, \mathcal{A}, μ) be a measure space and let $\{f_n\}_{n \in \mathbb{N}}, f$, be measurable functions. Show that if $f_n \ge 0$ for all $n \in \mathbb{N}$ and $f_n \xrightarrow{\mu} f$ then

$$\int f \, \mathrm{d}\mu \leq \liminf_{n \to +\infty} \int f_n \, \mathrm{d}\mu$$

3. (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. Show that there exists some C > 0 such that

$$||f||_1 \le C(||f||_2 + ||x^2f||_2).$$

4. (10 points) Let $f:[0,1] \to \mathbb{R}$ be a Borel measurable function such that $\int_0^1 |f(t)| dt < \infty$. Prove that the function

$$h(x) = \int_x^1 t^{-1} f(t) \,\mathrm{d}t$$

is integrable on [0, 1] and $\int_0^1 f(t) dt = \int_0^1 h(t) dt$.

5. (10 points) Find the following limit

$$\lim_{n\to\infty}\int_0^n \left(\frac{\sin x}{x}\right)^n \,\mathrm{d}x.$$

6. (10 points) Let (X, \mathcal{A}, μ) be a σ -finite measure space. A set $A \in \mathcal{A}$ is called an atom if $\mu(A) > 0$ and for all $B \subset A, B \in \mathcal{A}$, we have that $\mu(B) = 0$ or $\mu(B) = \mu(A)$. Show that if there exists an $\varepsilon > 0$ such that $\mu(A) \ge \varepsilon$ for all $A \in \mathcal{A}$ with $\mu(A) > 0$ then every $A \in \mathcal{A}$ with $\mu(A) > 0$ contains an atom.