Instructions and notation:

- (i) Give full justifications for your answers in the exam booklet.
- (ii) Lebesgue measure on \mathbb{R}^n is denoted by \mathcal{L}^n and dx corresponds to Lebesgue integration in \mathbb{R} .
- 1. (10 points) Prove or disprove three of the following statements.
 - (a) If $A \subset \mathbb{R}$ and $\mathcal{L}^1(A) > 0$ then there exist $x, y \in A$ such that $x y \notin \mathbb{Q}$.
 - (b) Let $f : [0,1] \to \mathbb{R}$. If the sets $\{x \in [0,1] : f(x) = c\}$ are Lebesgue measurable for every $c \in \mathbb{R}$, then f is measurable.
 - (c) Let (X, \mathcal{F}, μ) be a finite measure space. Let $\{f_n\}_{n \in \mathbb{N}}, f : X \to \mathbb{R}$ be measurable functions. If $f_n \to f$ in measure then $f_n \to f$ almost everywhere.
 - (d) If μ and ν are measures on a measurable space (X, F) that have exactly the same sets of measure zero (that is, μ(A) = 0 if and only if ν(A) = 0) then L[∞](μ) = L[∞](ν).
- 2. (10 points) Let (X, \mathcal{A}, ν) be a measure space, and let $A_1, A_2, \ldots \in \mathcal{A}$. Consider the set $A = \bigcap_{n \ge 1} \bigcup_{k \ge n} A_k$. Show that if $\sum_{n=1}^{\infty} \nu(A_n) < \infty$ then $\nu(A) = 0$.
- 3. (10 points) Compute the limit

$$\lim_{n\to\infty}\int_0^n\frac{\cos nx}{1+nx^4}\,\mathrm{d}x.$$

- 4. (10 points) Let μ and ν be finite measures on a measurable space (X, \mathcal{F}) .
 - (a) Show that there exists a non-negative measurable function g on X, such that

$$\int (1-g)f\,\mathrm{d}\nu = \int gf\,\mathrm{d}\mu,$$

for all non-negative measurable functions f on X.

- (b) Show, moreover, that g can be chosen to satisfy $g \le 1$ everywhere on X.
- 5. (10 points) Let (X, \mathcal{F}, μ) be a measure space, and g a non-negative measurable function on X such that

$$\mu(\{x \in X : g(x) > 0\}) > 0.$$

Show that the function ϕ given by

$$\phi(r) = \log \int g^r d\mu$$
 for $r \in (0, \infty)$

is convex on the interval $\{r > 0 : \int g^r d\mu < \infty\}$.

- 6. (10 points) Let $p : \mathbb{R}^n \to \mathbb{R}$ be a polynomial in *n* variables, where $n \ge 2$. Show that the set $p^{-1}(\{0\}) \subset \mathbb{R}^n$ has Lebesgue measure 0.
- 7. (10 points) Let X and Y be compact Hausdorff spaces, μ a Radon measure on X and ν a Radon measure on Y. Show that there is a Radon measure λ on $X \times Y$ such that

$$\int F \, \mathrm{d}\lambda = \int_X \left[\int_Y F(x, y) \, \mathrm{d}\nu(y) \right] \, \mathrm{d}\mu(x)$$

for all continuous functions $F : X \times Y \to \mathbb{R}$.