Instructions and notation:

(i) Give full justifications for your answers in the exam booklet.

(ii) Lebesgue measure on \mathbb{R}^n is denoted by L^n and dx corresponds to Lebesgue integration in \mathbb{R}.

1. (10 points) Prove or disprove three of the following statements.

 (a) If $A \subset \mathbb{R}$ and $L^1(A) > 0$ then there exist $x, y \in A$ such that $x - y \notin \mathbb{Q}$.

 (b) Let $f : [0, 1] \to \mathbb{R}$. If the sets $\{x \in [0, 1] : f(x) = c\}$ are Lebesgue measurable for every $c \in \mathbb{R}$, then f is measurable.

 (c) Let (X, \mathcal{F}, μ) be a finite measure space. Let $\{f_n\}_{n \in \mathbb{N}}, f : X \to \mathbb{R}$ be measurable functions. If $f_n \to f$ in measure then $f_n \to f$ almost everywhere.

 (d) If μ and ν are measures on a measurable space (X, \mathcal{F}) that have exactly the same sets of measure zero (that is, $\mu(A) = 0$ if and only if $\nu(A) = 0$) then $L^\infty(\mu) = L^\infty(\nu)$.

2. (10 points) Let (X, \mathcal{A}, ν) be a measure space, and let $A_1, A_2, \ldots \in \mathcal{A}$. Consider the set $A = \bigcap_{n=1}^{\infty} \bigcup_{k \geq n} A_k$. Show that if $\sum_{n=1}^{\infty} \nu(A_n) < \infty$ then $\nu(A) = 0$.

3. (10 points) Compute the limit

$$\lim_{n \to \infty} \int_0^\infty \frac{\cos nx}{1 + nx^2} \, dx.$$

4. (10 points) Let μ and ν be finite measures on a measurable space (X, \mathcal{F}).

 (a) Show that there exists a non-negative measurable function g on X, such that

$$\int (1 - g) f \, d\nu = \int g f \, d\mu,$$

 for all non-negative measurable functions f on X.

 (b) Show, moreover, that g can be chosen to satisfy $g \leq 1$ everywhere on X.

5. (10 points) Let (X, \mathcal{F}, μ) be a measure space, and g a non-negative measurable function on X such that

$$\mu(\{x \in X : g(x) > 0\}) > 0.$$

 Show that the function ϕ given by

$$\phi(r) = \log \int g^r \, d\mu \quad \text{for} \quad r \in (0, \infty)$$

is convex on the interval $\{r > 0 : \int g^r \, d\mu < \infty\}$.

6. (10 points) Let $p : \mathbb{R}^n \to \mathbb{R}$ be a polynomial in n variables, where $n \geq 2$. Show that the set $p^{-1}(\{0\}) \subset \mathbb{R}^n$ has Lebesgue measure 0.

7. (10 points) Let X and Y be compact Hausdorff spaces, μ a Radon measure on X and ν a Radon measure on Y. Show that there is a Radon measure λ on $X \times Y$ such that

$$\int F \, d\lambda = \int_X \left[\int_Y F(x, y) \, d\nu(y) \right] \, d\mu(x)$$

for all continuous functions $F : X \times Y \to \mathbb{R}$.