Applied Math Prelim January 2023

Student ID

- 1. Let T be a linear transformation between normed linear spaces X, Y.
 - (a) (10 pts) Show that T is continuous iff $\sup_n ||Tx_n||_Y < \infty$ for every sequence $x_n \to 0$ in X.
 - (b) (15 pts) Show that T is compact iff $Tx_n \to 0$ in Y whenever $x_n \to 0$ in X.
- 2. Let operator A = u'' + 4u.
 - (a) (10 pts) Find the Green's function G of operator A subject to boundary conditions u'(0) = 0, u(1) = 0.
 - (b) (5 pts) Find eigenvalues of A subject to the above boundary conditions.
 - (c) (15 pts) Let $T: L^2(0,1) \to L^2(0,1)$ be defined by

$$Tf(x) = \int_0^1 G(x, y) f(y) dy$$

Show that T is compact and find ||T||.

- 3. Let X, Y be normed linear spaces, $D \subset X$ is open. $f: D \to Y$ is a mapping.
 - (a) (5 pts) State the definition of Fréchet derivative of f.
 - (b) (5 pts) Let X = Y = C[0, 1] with sup-norm. Let $v_i \in X$, $t_i \in [0, 1]$ and $f(x) = \sum_{i=1}^n x^2(t_i) v_i$. Prove that f is Fréchet differentiable at all $x \in X$ and find a formula for f'(x).
- 4. Let K be a nonempty convex set in Hilbert space X.
 - (a) (5 pts) Prove the paralleogram identity $2||x||^2 + 2||y||^2 = ||x y||^2 + ||x + y||^2$ for all $x, y \in X$.
 - (b) (5 pts) Show that there is a unique point in K which is closest to x. Denote this point by Px.
 - (c) (5 pts) Show that $\mathcal{R}\langle x Px, v Px \rangle \leq 0$ for any $v \in K$. Here $\mathcal{R}\langle \cdot, \cdot \rangle$ stands for the real part of the inner product $\langle \cdot, \cdot \rangle$.
 - (d) (5 pts) Show that $||Px Py|| \le ||x y||$ for any $x, y \in X$.
- 5. (15 pts) Given $U(x,y) = \ln \frac{1}{\sqrt{x^2 + y^2}}$. Find ΔU in the distributional sense.