Preliminary Examination in Numerical Analysis January, 2023

Instructions: Solve 6 out of 8 problems. Any results that your responses rely upon must be stated clearly.

Notation:

- The set of all real numbers is denoted by \mathbb{R} .
- The set of all complex numbers is denoted by C.
- $\mathbb{P}^k[a, b]$ is the vector space of all real polynomials $p: [a, b] \to \mathbb{R}$ of degree k or less.
- Bold font for column vectors, *e.g.*

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

in which case we say $\mathbf{x} \in \mathbb{R}^n$ ($\mathbf{x} \in \mathbb{C}^n$) if $x_i \in \mathbb{R}$ ($x_i \in \mathbb{C}$) for $1 \le i \le n$.

- The transpose of \mathbf{x} is denoted by \mathbf{x}^{\top} .
- Double-bar font also for matrices, *e.g.* \mathbb{A} (but not \mathbb{R} or \mathbb{C}).
- The set of all complex matrices with n rows and m columns is denoted by $M_{n,m}$.
- 1. Let $\phi_j : [a, b] \to \mathbb{R}, -\infty < a < b < \infty$, for $j = 0, 1, \dots, n, n \ge 1$, be polynomials satisfying
 - $\phi_j(x)$ is a polynomial of order precisely j, for each j = 0, 1, ..., n,
 - and the functions are L^2 -orthonormal;

$$\int_{a}^{b} \phi_{j}(x)\phi_{k}(x) \, dx = \begin{cases} 1, & \text{if } j = k, \\ 0, & \text{otherwise} \end{cases}, \text{ for all } 0 \le j \le n \text{ and } 0 \le k \le n.$$

(a) Let $p_n(x) = \sum_{j=0}^n \sqrt{j} \cdot \phi_j(x)$. Find the limit

$$\lim_{n \to \infty} \frac{1}{n^2} \int_a^b |p_n(x)|^2 dx.$$

(b) Prove that the roots x_i , i = 1, 2, ..., n, of $\phi_n(x)$ are real, simple, and that $a < x_i < b$.

2. Denote by $\|\cdot\|_V$ some vector norm on \mathbb{C}^n . Given any $\mathbb{A} \in M_{n,n}$, denote the induced matrix norm by

$$\operatorname{lub}_{V}\left(\mathbb{A}\right) = \max_{\|\mathbf{x}\|_{V}=1} \|\mathbb{A}\mathbf{x}\|_{V}.$$

(a) Prove that $lub_V(\cdot)$ is submultiplicative.

(b) Given any matrix norm $\|\cdot\|$ on $M_{n,n}$ that is consistent with $\|\cdot\|_V$, prove that the condition number, $\kappa(\mathbb{A})$, defined with respect to the matrix norm $\|\cdot\|$ for an invertible \mathbb{A} satisfies

$$1 \leq \kappa(\mathbb{A}).$$

(c) Now let the vector norm $\|\mathbf{x}\|_V$ be the maximum size of the entries of \mathbf{x} . In the linear system

 $\mathbb{A}\mathbf{x} = \mathbf{b}$, with \mathbb{A} defined below, assume that the vector \mathbf{b} may have up to a 2% relative error, as measured using the vector norm $\|\cdot\|_{V}$. Provide a numerical bound (with justification) for the corresponding relative error in computing the entries of \mathbf{x} .

$$\mathbb{A} = \left[\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array} \right].$$

3. Let $s_{\Delta} : [-1,1] \to \mathbb{R}$ be a cubic spline function relative to the domain partition $\Delta \equiv \{-1,0,1\}$, so there is one *knot* at x = 0. Consider the set V of all such s_{Δ} that satisfy the simultaneous conditions $s_{\Delta}(-1) = 0$, $s_{\Delta}(0) = 0$, $s_{\Delta}(1) = 0$, and $s_{\Delta}'(0) = 0$. Note that V is a vector space. Derive a basis for V (show the work for your derivation).

4. Given any real-valued function f = f(x) that is continuous for all $x \in [0, 1]$ and differentiable at x = 0, let $\tilde{I}(f)$ denote the quadrature approximation

$$\tilde{I}(f) = \frac{1}{12} \left(5f(0) + f'(0) + 4f(1/2) + 3f(1) \right),$$

with associated quadrature error, say R(f), defined by

$$R(f) = \tilde{I}(f) - \int_0^1 f(x) \, dx.$$

Given any $f \in \mathcal{C}^3[0,1]$, prove that there exists some $y \in (0,1)$ such that

$$R(f) = \frac{1}{144}f^{(3)}(y)$$

5. Denote by $\|\cdot\|$ the Euclidean vector norm on \mathbb{C}^n . Given any $\mathbb{A} \in M_{n,n}$, denote the induced matrix norm by

$$\|\mathbb{A}\| = \max_{\|\mathbf{x}\|=1} \|\mathbb{A}\mathbf{x}\|.$$

Next, let $\mathbb{A} \in M_{n,n}$ be a fixed Householder matrix, and assume $\mathbb{B} \in M_{n,n}$ is given such that $\|\mathbb{B} - \mathbb{A}\| = 1/3$.

(a) Prove that \mathbb{B} is nonsingular.

(b) If $\mathbb{A}\mathbf{x} = \mathbb{B}\mathbf{y}$, prove that $2\|\mathbf{x} - \mathbf{y}\| \leq \|\mathbf{x}\|$.

6. Write out the composite trapezoidal rule to estimate $\int_a^b f(x) dx$, a < b, using a partition $x_j = a + j \cdot h$, $j = 0, 1, \ldots, N$ and h = (b - a)/N. Prove that the quadrature error vanishes as $N \to \infty$, given that $f \in \mathcal{C}^1[a, b]$.

7. Given any real-valued function f = f(x) that is continuous for all $x \in [-1, 1]$, let $I(f) = \int_{-1}^{1} f(x) dx$. Define a quadrature approximation by

$$I(f) = w_{-1}f(-1) + w_0f(0) + w_1f(1)$$

Here, the weights w_j , j = -1, 0, 1, are real numbers such that $I(f) = \tilde{I}(f)$ whenever f is a polynomial of degree four or less with f(0) = f'(0) and f(1) = f'(1). (a) Prove that the weights w_j , j = -1, 0, 1, exist and are unique. (b) Prove that there exists a particular expected $C \ge 0$ such that for all $f \in C^{5}[-1, 1]$ with

(b) Prove that there exists a positive constant C > 0 such that for all $f \in C^5[-1, 1]$ with f(0) = f'(0) and f(1) = f'(1), $\tilde{I}(f) = I(f) = Cf^{(5)}(f)$

$$\tilde{I}(f) - I(f) = Cf^{(5)}(\xi),$$

for some $\xi \in (-1, 1)$, where ξ may depend on f, but C does not.

8. Given any matrix **S**, denote by \mathbf{S}^{H} the result of replacing each entry of **S** by its complex conjugate, then transposing the resulting matrix. Let **A** and **B** be matrices that satisfy $\mathbf{U}^{H}\mathbf{A}\mathbf{V} = \mathbf{B}$, where **U** and **V** are unitary matrices. Denote by \mathbf{A}^{+} and \mathbf{B}^{+} the pseudoinverses of **A** and **B**, respectively. Prove that $\mathbf{V}^{H}\mathbf{A}^{+}\mathbf{U} = \mathbf{B}^{+}$.