Preliminary Examination in Numerical Analysis

January, 2023
Instructions: Solve 6 out of 8 problems. Any results that your responses rely upon must be stated clearly.

Notation:

- The set of all real numbers is denoted by \mathbb{R}.
- The set of all complex numbers is denoted by \mathbb{C}.
- $\mathbb{P}^{k}[a, b]$ is the vector space of all real polynomials $p:[a, b] \rightarrow \mathbb{R}$ of degree k or less.
- Bold font for column vectors, e.g.

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

in which case we say $\mathbf{x} \in \mathbb{R}^{n}\left(\mathbf{x} \in \mathbb{C}^{n}\right)$ if $x_{i} \in \mathbb{R}\left(x_{i} \in \mathbb{C}\right)$ for $1 \leq i \leq n$.

- The transpose of \mathbf{x} is denoted by \mathbf{x}^{\top}.
- Double-bar font also for matrices, e.g. \mathbb{A} (but not \mathbb{R} or \mathbb{C}).
- The set of all complex matrices with n rows and m columns is denoted by $M_{n, m}$.

1. Let $\phi_{j}:[a, b] \rightarrow \mathbb{R},-\infty<a<b<\infty$, for $j=0,1, \ldots, n, n \geq 1$, be polynomials satisfying

- $\phi_{j}(x)$ is a polynomial of order precisely j, for each $j=0,1, \ldots, n$,
- and the functions are L^{2}-orthonormal;

$$
\int_{a}^{b} \phi_{j}(x) \phi_{k}(x) d x=\left\{\begin{array}{ll}
1, & \text { if } j=k, \\
0, & \text { otherwise }
\end{array} \quad \text {, for all } 0 \leq j \leq n \text { and } 0 \leq k \leq n\right.
$$

(a) Let $p_{n}(x)=\sum_{j=0}^{n} \sqrt{j} \cdot \phi_{j}(x)$. Find the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \int_{a}^{b}\left|p_{n}(x)\right|^{2} d x
$$

(b) Prove that the roots $x_{i}, i=1,2, \ldots, n$, of $\phi_{n}(x)$ are real, simple, and that $a<x_{i}<b$.
2. Denote by $\|\cdot\|_{V}$ some vector norm on \mathbb{C}^{n}. Given any $\mathbb{A} \in M_{n, n}$, denote the induced matrix norm by

$$
\operatorname{lub}_{V}(\mathbb{A})=\max _{\|\mathbf{x}\|_{V}=1}\|\mathbb{A} \mathbf{x}\|_{V}
$$

(a) Prove that $\operatorname{lub}_{V}(\cdot)$ is submultiplicative.
(b) Given any matrix norm $\|\cdot\|$ on $M_{n, n}$ that is consistent with $\|\cdot\|_{V}$, prove that the condition number, $\kappa(\mathbb{A})$, defined with respect to the matrix norm $\|\cdot\|$ for an invertible \mathbb{A} satisfies

$$
1 \leq \kappa(\mathbb{A})
$$

(c) Now let the vector norm $\|\mathbf{x}\|_{V}$ be the maximum size of the entries of \mathbf{x}. In the linear system
$\mathbb{A} \mathbf{x}=\mathbf{b}$, with \mathbb{A} defined below, assume that the vector \mathbf{b} may have up to a 2% relative error, as measured using the vector norm $\|\cdot\|_{V}$. Provide a numerical bound (with justification) for the corresponding relative error in computing the entries of \mathbf{x}.

$$
\mathbb{A}=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]
$$

3. Let $s_{\Delta}:[-1,1] \rightarrow \mathbb{R}$ be a cubic spline function relative to the domain partition $\Delta \equiv\{-1,0,1\}$, so there is one knot at $x=0$. Consider the set V of all such s_{Δ} that satisfy the simultaneous conditions $s_{\Delta}(-1)=0, s_{\Delta}(0)=0, s_{\Delta}(1)=0$, and $s_{\Delta}{ }^{\prime}(0)=0$. Note that V is a vector space. Derive a basis for V (show the work for your derivation).
4. Given any real-valued function $f=f(x)$ that is continuous for all $x \in[0,1]$ and differentiable at $x=0$, let $\tilde{I}(f)$ denote the quadrature approximation

$$
\tilde{I}(f)=\frac{1}{12}\left(5 f(0)+f^{\prime}(0)+4 f(1 / 2)+3 f(1)\right)
$$

with associated quadrature error, say $R(f)$, defined by

$$
R(f)=\tilde{I}(f)-\int_{0}^{1} f(x) d x
$$

Given any $f \in \mathcal{C}^{3}[0,1]$, prove that there exists some $y \in(0,1)$ such that

$$
R(f)=\frac{1}{144} f^{(3)}(y)
$$

5. Denote by $\|\cdot\|$ the Euclidean vector norm on \mathbb{C}^{n}. Given any $\mathbb{A} \in M_{n, n}$, denote the induced matrix norm by

$$
\|\mathbb{A}\|=\max _{\|\mathbf{x}\|=1}\|\mathbb{A} \mathbf{x}\|
$$

Next, let $\mathbb{A} \in M_{n, n}$ be a fixed Householder matrix, and assume $\mathbb{B} \in M_{n, n}$ is given such that $\|\mathbb{B}-\mathbb{A}\|=1 / 3$.
(a) Prove that \mathbb{B} is nonsingular.
(b) If $\mathbb{A} \mathbf{x}=\mathbb{B} \mathbf{y}$, prove that $2\|\mathbf{x}-\mathbf{y}\| \leq\|\mathbf{x}\|$.
6. Write out the composite trapezoidal rule to estimate $\int_{a}^{b} f(x) d x, a<b$, using a partition $x_{j}=a+j \cdot h, j=0,1, \ldots, N$ and $h=(b-a) / N$. Prove that the quadrature error vanishes as $N \rightarrow \infty$, given that $f \in \mathcal{C}^{1}[a, b]$.
7. Given any real-valued function $f=f(x)$ that is continuous for all $x \in[-1,1]$, let $I(f)=\int_{-1}^{1} f(x) d x$. Define a quadrature approximation by

$$
\tilde{I}(f)=w_{-1} f(-1)+w_{0} f(0)+w_{1} f(1)
$$

Here, the weights $w_{j}, j=-1,0,1$, are real numbers such that $I(f)=\tilde{I}(f)$ whenever f is a polynomial of degree four or less with $f(0)=f^{\prime}(0)$ and $f(1)=f^{\prime}(1)$.
(a) Prove that the weights $w_{j}, j=-1,0,1$, exist and are unique.
(b) Prove that there exists a positive constant $C>0$ such that for all $f \in \mathcal{C}^{5}[-1,1]$ with $f(0)=f^{\prime}(0)$ and $f(1)=f^{\prime}(1)$,

$$
\tilde{I}(f)-I(f)=C f^{(5)}(\xi)
$$

for some $\xi \in(-1,1)$, where ξ may depend on f, but C does not.
8. Given any matrix \mathbf{S}, denote by \mathbf{S}^{H} the result of replacing each entry of \mathbf{S} by its complex conjugate, then transposing the resulting matrix. Let \mathbf{A} and \mathbf{B} be matrices that satisfy
$\mathbf{U}^{H} \mathbf{A V}=\mathbf{B}$, where \mathbf{U} and \mathbf{V} are unitary matrices. Denote by \mathbf{A}^{+}and \mathbf{B}^{+}the pseudoinverses of \mathbf{A} and \mathbf{B}, respectively. Prove that $\mathbf{V}^{H} \mathbf{A}^{+} \mathbf{U}=\mathbf{B}^{+}$.

