Abstract Algebra Prelim

Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (10 pts) Let G be a finite group and let H and N be subgroups of G, with N a normal subgroup of G.
 - (a) (3 pts) Prove that $NH = \{nh : n \in N, h \in H\}$ is a subgroup of G.
 - (b) (4 pts) Prove that

$$|NH| = \frac{|N||H|}{|N \cap H|}$$

- (c) (3 pts) Suppose H is a Sylow p-subgroup of G and N is a p-subgroup of G. Prove that $N \subset H$. (This could be solved using previous parts or by other methods.)
- 2. (**10 pts**)
 - (a) (6 pts) Prove that $\mathbf{Z}[x]/(x^2-2) \cong \mathbf{Z}[\sqrt{2}]$ as rings.
 - (b) (4 pts) Prove that $\mathbf{Z}[x]/(x^2-1) \cong \mathbf{Z} \times \mathbf{Z}$ as rings. (Hint: for a ring A, consider A/pA for a suitable prime p.)
- 3. (10 pts) Let K be a field. Prove K[x] is Euclidean with respect to the degree: for all f(x) and g(x) in K[x] such that g(x) ≠ 0, there exist q(x) and r(x) in K[x] such that
 (i) f(x) = g(x)q(x) + r(x) and (ii) r(x) = 0 or deg r(x) < deg g(x), and such q(x) and r(x) are unique.
- 4. (10 pts) For a square matrix $A \in M_n(\mathbf{R})$, where $n \ge 1$, let $v_1, \ldots, v_k \in \mathbf{R}^n$ be eigenvectors of A and assume their associated eigenvalues $\lambda_1, \ldots, \lambda_k$ are distinct: $\lambda_i \ne \lambda_j$ for $i \ne j$.
 - (a) (5 pts) Prove that the set $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.
 - (b) (5 pts) Further assume that A is symmetric. Prove that the set $\{v_1, v_2, \ldots, v_k\}$ is orthogonal with respect to the standard inner product on \mathbf{R}^n .
- 5. (10 pts) Let V be an n-dimensional vector space over a field K, where $n \in \mathbb{Z}^+$.
 - (a) (3 pts) If $\varphi: V \to K$ is a nonzero element of the dual space of V, then prove ker φ has dimension n-1.
 - (b) (7 pts) Prove every subspace W of V with dimension n-1 has the form ker φ for some nonzero φ in the dual space of V.
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) A nonabelian semidirect product $H \rtimes K$ where H and K are nontrivial (write the group law for your $H \rtimes K$ explicitly).
 - (b) (2.5 pts) A group action with more than one orbit.
 - (c) (**2.5 pts**) Two non-isomorphic *abelian* groups of order 8.
 - (d) (2.5 pts) A ring A where the only nilpotent element is 0 and A is not an integral domain.