Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. (10 pts) Let G be a finite group and let H and N be subgroups of G, with N a normal subgroup of G.
(a) (3 pts) Prove that $N H=\{n h: n \in N, h \in H\}$ is a subgroup of G.
(b) (4 pts) Prove that

$$
|N H|=\frac{|N||H|}{|N \cap H|}
$$

(c) (3 pts) Suppose H is a Sylow p-subgroup of G and N is a p-subgroup of G. Prove that $N \subset H$. (This could be solved using previous parts or by other methods.)
2. ($\mathbf{1 0} \mathrm{pts})$
(a) ($\mathbf{6}$ pts) Prove that $\mathbf{Z}[x] /\left(x^{2}-2\right) \cong \mathbf{Z}[\sqrt{2}]$ as rings.
(b) (4 pts) Prove that $\mathbf{Z}[x] /\left(x^{2}-1\right) \nsubseteq \mathbf{Z} \times \mathbf{Z}$ as rings. (Hint: for a ring A, consider $A / p A$ for a suitable prime p.)
3. (10 pts) Let K be a field. Prove $K[x]$ is Euclidean with respect to the degree: for all $f(x)$ and $g(x)$ in $K[x]$ such that $g(x) \neq 0$, there exist $q(x)$ and $r(x)$ in $K[x]$ such that
(i) $f(x)=g(x) q(x)+r(x)$ and (ii) $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$,
and such $q(x)$ and $r(x)$ are unique.
4. (10 pts) For a square matrix $A \in \mathrm{M}_{n}(\mathbf{R})$, where $n \geq 1$, let $v_{1}, \ldots, v_{k} \in \mathbf{R}^{n}$ be eigenvectors of A and assume their associated eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ are distinct: $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$.
(a) (5 pts) Prove that the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.
(b) (5 pts) Further assume that A is symmetric. Prove that the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is orthogonal with respect to the standard inner product on \mathbf{R}^{n}.
5. (10 $\mathbf{p t s}$) Let V be an n-dimensional vector space over a field K, where $n \in \mathbf{Z}^{+}$.
(a) (3 pts) If $\varphi: V \rightarrow K$ is a nonzero element of the dual space of V, then prove ker φ has dimension $n-1$.
(b) ($\mathbf{7} \mathbf{p t s}$) Prove every subspace W of V with dimension $n-1$ has the form $\operatorname{ker} \varphi$ for some nonzero φ in the dual space of V.
6. (10 pts) Give examples as requested, with justification.
(a) (2.5 pts) A nonabelian semidirect product $H \rtimes K$ where H and K are nontrivial (write the group law for your $H \rtimes K$ explicitly).
(b) (2.5 pts) A group action with more than one orbit.
(c) (2.5 pts) Two non-isomorphic abelian groups of order 8 .
(d) $(2.5 \mathrm{pts})$ A ring A where the only nilpotent element is 0 and A is not an integral domain.

