Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. ($\mathbf{1 0} \mathbf{~ p t s})$ The prime factorization of 2023 is $7 \cdot 17^{2}$.
(a) ($5 \mathbf{p t s})$ For each prime p, prove all groups of order p^{2} are abelian.
(b) (5 pts) Prove every group of order 2023 is isomorphic to a direct product $H \times K$, where $|H|=7$ and $|K|=17^{2}$. (That shows, by (a), that all groups of order 2023 are abelian. You can't assume in (b) that the group is abelian.)
2. (10 pts) Prove that if G is a finite group whose only automorphism is the identity map, then G is trivial or of order 2 .
3. (10 pts)
(a) (3 pts) State Zorn's lemma.
(b) ($\mathbf{7} \mathbf{p t s}$) Use Zorn's lemma to prove every nonzero commutative ring contains a maximal ideal.
4. (10 pts) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be vectors in \mathbf{Q}^{n}, where $1 \leq m \leq n$, and let $V \subseteq \mathbf{Q}^{n}$ be their span over \mathbf{Q}. Let $V_{\mathbf{R}}$ be their span over \mathbf{R} in \mathbf{R}^{n}. Prove that $V_{\mathbf{R}} \cap \mathbf{Q}^{n}=V$.
5. (10 pts) Let V be an n-dimensional real vector space, where $n \geq 1$, with basis e_{1}, \ldots, e_{n}. Let $\langle\cdot, \cdot\rangle$ be an inner product on V and D be the $n \times n$ matrix with (i, j)-entry $D_{i j}=\left\langle e_{i}, e_{j}\right\rangle$.
(a) (2 pts) For v and w in V, prove

$$
\langle v, w\rangle=[v]^{\top} D[w]
$$

where $[v]$ and $[w]$ are the representations of v and w as column vectors in the basis e_{1}, \ldots, e_{n}.
(b) (4 pts) Prove that D is symmetric and use the spectral theorem to show $\operatorname{det}(D)>0$. In particular D is invertible.
(c) (4 pts) Assuming e_{1}, \ldots, e_{n} is orthonormal for $\langle\cdot, \cdot\rangle$, show a linear map $L: V \rightarrow V$ is self-adjoint for $\langle\cdot, \cdot\rangle$ if and only if the matrix $[L]$ is symmetric, where $[L]$ is the matrix of L with respect to e_{1}, \ldots, e_{n}. Remark: You do not need (b) to solve (c).
6. (10 pts) Give examples as requested, with justification.
(a) (2.5 pts) An infinite abelian group in which every element has finite order.
(b) (2.5 pts) An irreducible polynomial of degree 3 in $\mathbf{F}_{2}[x]$.
(c) (2.5 pts) A ring R and ideals I and J in R such that $I J \neq I \cap J$.
(d) (2.5 pts) A basis of the vector space of 2×2 real matrices with trace 0 .

