COMPLEX ANALYSIS PRELIM

AUGUST 2023

Instructions, conventions and notation.

- Four fully justified and completely solved problems guarantee a Ph.D. pass.
- Clearly state which theorems you are using and verify their assumptions.
- Denote by \mathbb{C} the complex plane and $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ the open unit disk.
- A region means a nonempty connected open set.
- The terminology analytic function and holomorphic function are used interchangeably.
- Entire functions are holomorphic in \mathbb{C}.

Problem 1. (a) Let $f(w):=\int_{w+\mathbb{R}} \frac{d z}{z^{3}-z^{2}+z-1}$, where $w \in \mathbb{C}$, and $w+\mathbb{R}$ denotes the horizontal line in \mathbb{C} that contains w and is oriented from left to right. Find all w for which $f(w)$ is defined and compute it.
(b) Let $g(w):=\int_{w+i \mathbb{R}} \frac{d z}{z^{3}-z^{2}+z-1}$, where $w \in \mathbb{C}$, and $w+\mathbb{i} \mathbb{R}$ denotes the vertical line in \mathbb{C} that contains w and is oriented upwards. Find all w for which $g(w)$ is defined and compute it.

Problem 2. If $\alpha \in \mathbb{D}$, prove that $F(z):=(\bar{\alpha}-z) /(1-\alpha z)$ maps \mathbb{D} to \mathbb{D} bijectively.

Problem 3. Describe a holomorphic isomorphism between regions $A=\{z: 0<\operatorname{Re}(z)<1\}$ and $B=\{z: \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}$.

Problem 4. If $\mathcal{F}:=\{f: \mathbb{D} \rightarrow \mathbb{D}, f$ is holomorphic in $\mathbb{D}\}$, find $\sup _{f \in \mathcal{F}}\left|f^{\prime \prime}(0)\right|$.

Problem 5. If $\mathcal{F}_{0}:=\{f: \mathbb{D} \rightarrow \mathbb{D}, f$ is holomorphic and has at least two zeros in $\mathbb{D}\}$, is \mathcal{F}_{0} a normal family? Give a proof of your assertion.

Problem 6. Let $u: \mathbb{C} \rightarrow \mathbb{R}$ and $v: \mathbb{C} \rightarrow \mathbb{R}$ be harmonic conjugate functions. If u is bounded, is it true that v is also bounded? Either provide a proof or give a counterexample.

Problem 7. If f is entire and γ is a Jordan curve satisfying $f(z) \notin \gamma$ for all $z \in \mathbb{C}$, prove that f is constant.

