Instructions and notation:

- (i) You may use standard results from 5111 (although none of the problems should be interpreted as a "standard result").
- (ii) Try to give full justifications for your answers in the exam booklet. If your proof has a gap, mention it and specify what would be needed to fill in the gap.
- (iii) We let *m* denote the standard Lebesgue measure on \mathbb{R}^n .
- 1. (10 points) Let (X, \mathcal{A}, μ) be a measure space and $f: X \to [0, \infty)$ be a measurable function. Define the set function

$$v(A) = \int_A f \,\mathrm{d}\mu, \quad A \in \mathcal{A}.$$

Prove that v is a measure and that $\int g \, dv = \int g f \, d\mu$ for all measurable $g: X \to [0, \infty)$.

2. (10 points) Let (X, \mathcal{A}, μ) be a *finite* measure space. Prove that $f \in L^1(\mu)$ if and only if

$$\sum_{k=1}^{\infty} 2^k \mu(\{x \in X : |f(x)| \ge 2^k\}) < \infty.$$

- 3. Let $1 < p_1 < p_2 < \infty$. You may assume *m* is Lebesgue measure on \mathbb{R} .
 - (a) (5 points) Let $f_i \in L^{p_i}(m)$, i = 1, 2 be nonnegative functions. Find $r = r(p_1, p_2)$ for which $(f_1 f_2)^r \in L^1(m)$.
 - (b) (5 points) If $s \neq r(p_1, p_2)$, show that there exist nonnegative $f_i \in L^{p_i}(m)$, i = 1, 2, for which $(f_1 f_2)^s \notin L^1(m)$.
- 4. (10 points) Let

$$f_n(x) = \frac{1}{1 + x^{\frac{\sqrt{n}}{\log(n+2023)}}}, x \ge 0, n \in \mathbb{N}.$$

Find $\lim_{n\to\infty}\int_0^\infty f_n \,\mathrm{d}m$.

- 5. Let $T = \{(x, y) \in \mathbb{R}^2 : 0 \le |x| \le y \le 1\}$, and μ be the restriction of *m* to *T*. Let $f \in L^2(T, \mu)$. Prove that
 - (a) (4 points) $f \in L^1(T,\mu)$,
 - (b) (6 points) $\liminf_{y\to 0^+} \int_{-y}^{y} |f(x, y)| \, dx = 0.$
- 6. (10 points) Let $A \subset \mathbb{R}$ be Lebesgue measurable with finite Lebesgue measure. Prove that

$$\lim_{|x|\to 0} m(A \cap (x+A)) = m(A).$$

Here, $x + A = \{x + y : y \in A\}.$