Abstract Algebra Prelim

Aug. 2024

Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (10 pts) Let $m, n \ge 2$ in **Z** and let $u \in (\mathbf{Z}/(m))^{\times}$ satisfy $u^n \equiv 1 \mod m$, so we get a group homomorphism $\varphi : \mathbf{Z}/(n) \to (\mathbf{Z}/(m))^{\times}$ by $\varphi(x \mod n) = u^x \mod m$. Let $G = \mathbf{Z}/(m) \rtimes_{\varphi} \mathbf{Z}/(n)$ be the semidirect product associated to φ .
 - (a) (4 pts) Fill in the missing part of the group law and inversion in G: (a, b)(c, d) = (?, b+d)and $(a, b)^{-1} = (?, -b)$.
 - (b) (6 pts) Show the center of G is $\{(a, b) \in G : (u 1)a \equiv 0 \mod m \text{ and } u^b \equiv 1 \mod m.\}$.
- 2. (10 pts) Let R be a nonzero commutative ring, $G = GL_2(R) = \{A \in M_2(R) : \det A \in R^{\times}\}$, and $H = \{\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} : x \in R^{\times}, y \in R\}$. You may use without proof that H is a subgroup of G. Show the normalizer of H in G is the set U of upper-triangular matrices in G:

$$\mathcal{N}_G(H) = U = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a \in R^{\times}, d \in R^{\times}, b \in R \right\}.$$

- 3. (10 pts) Let $D \in \mathbf{Z}$ be odd and not a square. Let I be the ideal $(2, 1 + \sqrt{D})$ in $\mathbf{Z}[\sqrt{D}]$.
 - (a) (6 pts) Show $I^2 = 2I$ if $D \equiv 1 \mod 4$ and $I^2 = (2)$ if $D \equiv 3 \mod 4$.
 - (b) (4 pts) If $D \equiv 1 \mod 4$, then show I is a non-principal ideal. Part (a) can be used here.
- 4. (**10 pts**)
 - (a) (5 pts) (Division by monics) Let R be a nonzero commutative ring. For f(x) and g(x) in R[x] such that g(x) is monic, prove that there are q(x) and r(x) in R[x] such that
 (i) f(x) = g(x)q(x) + r(x) and (ii) r(x) = 0 or deg r < deg g.
 Note: You are not being asked to show q(x) and r(x) are unique, although they are.
 - (b) (5 pts) For $D, N \in \mathbb{Z}$ with D not a square and $N \ge 2$, let $\varphi : \mathbb{Z}[x] \to \mathbb{Z}[\sqrt{D}]/(N)$ by $\varphi(f(x)) = f(\sqrt{D}) \mod (N)$. You may use without proof that φ is a ring homomorphism.
- 5. (10 pts) For finite-dimensional vector spaces V and W over a field k, let $L: V \to W$ be a k-linear map and $L^*: W^* \to V^*$ be its dual map.

Prove φ is surjective and ker φ is the ideal $(N, x^2 - D)$. Part (a) can be helpful.

- (a) (4 pts) Prove that if L is surjective then L^* is injective.
- (b) (6 pts) Prove that if L is injective then L^* is surjective. (Hint: Extend a basis of L(V) to a basis of W and let U be the span of the extra basis vectors, so $W = L(V) \oplus U$.)
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) An integer $m \ge 2$ such that the additive group $\mathbf{Z}/(m)$ has an automorphism of order 3.
 - (b) (2.5 pts) A polynomial $f(x) = x^2 + bx + c$ in $\mathbf{Z}[x]$ such that the ideal (5, f(x)) in $\mathbf{Z}[x]$ is maximal.
 - (c) (2.5 pts) Gaussian integers γ and ρ such that $10+7i = (2+5i)\gamma + \rho$ and $N(\rho) < N(2+5i)$.
 - (d) (2.5 pts) An orthonormal basis of the two-dimensional vector space $V = \mathbf{R} + \mathbf{R}x$ with the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x) dx$.