Abstract Algebra Prelim

Jan. 17, 2025

Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (10 pts) Let a group G act on the set X. For $x \in X$, let $\operatorname{Stab}_x = \{g \in G : gx = x\}$ denote the stabilizer subgroup of x.
 - (a) (5 pts) If x and y in X are in the same G-orbit, then show Stab_x and Stab_y are conjugate subgroups in G.
 - (b) (5 pts) For $x \in X$, prove there is a bijection between the orbit of x and $G/Stab_x$, the left cosets of $Stab_x$ in G.

Part (b) does not depend on part (a).

- 2. (10 pts) Let G be a group and $g \in G$ have finite order n.
 - (a) (5 pts) For $m \in \mathbb{Z}^+$, prove $g^m = e$ if and only if $n \mid m$.
 - (b) (5 pts) For $k \in \mathbb{Z}^+$, prove g^k has order n/(n, k).
- 3. (10 pts) Let $d \in \mathbb{Z}$ not be a square and N: $\mathbb{Z}[\sqrt{d}] \to \mathbb{Z}$ be the norm: $N(x + y\sqrt{d}) = x^2 dy^2$ when $x, y \in \mathbb{Z}$. You may use without proof that $N(\alpha\beta) = N(\alpha)N(\beta)$ for all α and β in $\mathbb{Z}[\sqrt{d}]$.
 - (a) (5 pts) Show u in $\mathbb{Z}[\sqrt{d}]$ is a unit if and only if $\mathbb{N}(u) = \pm 1$.
 - (b) (5 pts) If α in $\mathbb{Z}[\sqrt{d}]$ satisfies $N(\alpha) = \pm p$ where p is a prime number, then prove α is irreducible in $\mathbb{Z}[\sqrt{d}]$.
- 4. (10 pts) Let F be a field and V be an n-dimensional F-vector space, with dual space V^* . Fix n vectors v_1, \ldots, v_n in V and let $f: V^* \to F^n$ be the F-linear map where

$$f(\varphi) = \begin{pmatrix} \varphi(v_1) \\ \vdots \\ \varphi(v_n) \end{pmatrix} \text{ for each } \varphi \in V^*.$$

(You may use the F-linearity of f without proof.)

Show $\{v_1, \ldots, v_n\}$ is an F-linearly independent set if and only if f is injective.

- 5. (10 pts) Let A be an $n \times n$ real matrix that is diagonalizable. (Being diagonalizable means there is some basis of \mathbb{R}^n such that the matrix representation of A in that basis is diagonal, not that A is a diagonal matrix in the standard basis.)
 - (a) (5 pts) Prove that if $A = B^2$ for some diagonalizable real $n \times n$ matrix B, then every eigenvalue of A is nonnegative.
 - (b) (5 pts) Prove a converse to part (a): if every eigenvalue of A is nonnegative, then $A = B^2$ for some diagonalizable real $n \times n$ matrix B. This does not depend on part (a).
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) A group homomorphism $\mathbb{Z}/12\mathbb{Z} \to \mathbb{Z}/18\mathbb{Z}$ that is not identically zero.
 - (b) (2.5 pts) A 2-Sylow subgroup of the dihedral group of order 12.
 - (c) (2.5 pts) A maximal ideal in $\mathbb{Z}[x]$ that contains $x^2 + 1$.
 - (d) (2.5 pts) A ring homomorphism $f: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}/7\mathbb{Z}$. (Describe f by its values $f(a+b\sqrt{2})$ for $a, b \in \mathbb{Z}$ and make sure that $f(1) \equiv 1 \mod 7$.)