COMPLEX ANALYSIS PRELIM, JANUARY 2025

Instructions

- The terms "holomorphic" and "analytic" are used interchangeably.
- The set of complex numbers is denoted by \mathbb{C} . Denote $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. For two sets A, B, denote $A \setminus B = \{x \in A : x \notin B\}$.
- 1. How many zeros counting multiplicities does the function $e^z z^2 + 2025i$ have on the left half-plane $\{z \in \mathbb{C} : \operatorname{Re}(z) < 0\}$? Prove your assertion.
- 2. Explicitly construct a one-to-one conformal map from the region $\{z \in \mathbb{C} : |z+i| > 1, |z+2i| < 2\}$ onto \mathbb{D} .
- 3. For any holomorphic function h on \mathbb{D} such that $\text{Im}[h(z)] \ge 3$ for all $z \in \mathbb{D}$ and h(0) = 4i, find the largest possible value of |h'(0)|.
- 4. Let \mathscr{F} be the family of holomorphic functions defined on \mathbb{D} satisfying

$$\int_{\{|x+iy|<1\}} |f(x+iy)| dx dy \le 100, \quad \text{for all } f \in \mathscr{F}.$$

Show that \mathscr{F} is a normal family.

5. Evaluate the integral

$$\int_0^{+\infty} \frac{x^{\frac{3}{\pi}}}{x^2+1} dx$$

and justify your answer.

6. Does there exist a harmonic function $u: \mathbb{C} \to \mathbb{R}$ such that there are constants A, B > 0 with

 $u(z) \le A \log |z| + B$, for all $z \in \{z \in \mathbb{C} : |z| > 1, |\mathrm{Im}(z)| \le 10^{1000}\},\$

and that $\partial u/\partial x \neq 0$ and $\partial u/\partial y \neq 0$ at some $z_0 \in \mathbb{C}$? Prove your assertion.

7. Let g be a holomorphic function on $\mathbb{D} \setminus \{0\}$, and denote $g_k(z) = g(z/2^k)$ for each positive integer k. Suppose that

$$\max_{|z|=1/2} |g_k(z)| \le k \quad \text{for all } k \ge 1.$$

Show that g can be extended to a holomorphic function on \mathbb{D} .