Real Analysis Preliminary Exam January 2025

Instructions and Notation

- Justify all your steps, clearly identifying all results you are using. Do not invoke a result that is essentially equivalent to what you are asked to prove.
- The Lebesgue σ -algebra on \mathbb{R} and the Lebesgue measure on \mathbb{R} are denoted by \mathcal{L} and m, respectively.

Problems

- 1. (10 points) Let (Ω, \mathcal{F}) be a measurable space and let f be a real-valued measurable function. For M > 0, let $A_M = \{x \in \Omega : |f(x)| \leq M\}$. Prove that there exists a sequence of simple functions $(\phi_n : n \in \mathbb{N})$ with the property that for every M > 0 there exists $N \in \mathbb{N}$ so that $\sup_{x \in A_M} |\phi_n(x) - f(x)| < \frac{1}{M}$ for all $n \geq N$.
- 2. (10 points) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and $(f_n : n \in \mathbb{N})$ and f measurable functions satisfying $\lim_{n\to\infty} f_n = f$ in μ -measure and

$$\limsup_{n \to \infty} \int |f_n| d\mu \le \int |f| d\mu = 1$$
$$\lim_{n \to \infty} \int |f_n - f| d\mu = 0.$$

Prove

- 3. (10 points) Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space and let $f : \Omega \to [0, \infty]$ be an nonnegative integrable function. For $x \ge 0$, let $h(x) = \mu(\{f = x\})$. Prove that h is continuous and equal to zero, possibly except on a countable (this includes empty and finite) set.
- 4. (10 points) Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Suppose that $f : \Omega \to [0, \infty)$ is a measurable function, and that $\varphi : [0, \infty) \to \mathbb{R}$ an absolutely continuous function with $\varphi' \ge 0$, *m*-a.e. Prove
 - (a). The set

$$B = \{(\omega, s) \in \Omega \times \mathbb{R} : f(\omega) \le s\}$$

is measurable in the product σ -algebra $\mathcal{F} \times \mathcal{L}$.

(b).

$$\int \varphi(f) d\mu = \varphi(0) \mu(\Omega) + \int_{[0,\infty)} \mu(f \ge s) \varphi'(s) dm(s).$$

5. (10 points) Let f be a Lebesgue integrable function on \mathbb{R} and let $h(y) = \int |f(x-y) - f(x)| dm(x)$. Prove

$$\lim_{y \to \infty} h(y) = 2 \int |f| dm.$$

6. (10 points) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Suppose that $n \ge 2$ and $p_1, p_2, \ldots p_n$ are positive reals satisfying $\frac{1}{p_1} + \cdots + \frac{1}{p_n} = 1$ and $f_j \in L^{p_j}(\mu)$ for $j = 1, \ldots, n$. Prove that $\prod_{j=1}^n f_j \in L^1(\mu)$ and

$$\|\prod_{j=1}^n f_j\|_1 \le \prod_{j=1}^n \|f_j\|_{p_j}.$$

7. (10 points) Let $g : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function, and \mathcal{G} be the σ -algebra generated by g, that is the intersection of all σ -algebras containing the sets $L_y = \{x \in \mathbb{R} : g(x) \leq y\}$ where y ranges over \mathbb{R} . Show that for any Lebesgue integrable f there exists a \mathcal{G} -measurable function H_f such that

$$\int_A f dm = \int_A H_f dm, \text{ for all } A \in \mathcal{G}.$$