Complex Analysis Preliminary Exam, August 2025

Instructions and notation:

- (i) Give full justifications for all solutions in the exam booklet. Four completely correct solutions will guarantee a Ph.D. pass.
- (ii) Clearly state which theorems you are using and verify their assumptions.
- (iii) For $p \in \mathbb{C}$ and R > 0, $B(p,R) = \{z \in \mathbb{C} : |z-p| < R\}$ and $\bar{B}(p,R) = \{z \in \mathbb{C} : |z-p| \le R\}$.
- 1. Let $S = \{x + iy \in \mathbb{C} : -1 < x < |\cos x|\}$. If $f : S \to S$ is holomorphic and f(0) = 0 show that $|f'(0)| \le 1$.
- 2. Show that if f is entire and satisfies $|f'(z)| \le |z|, z \in \mathbb{C}$, then

$$f(z) = a + bz^2$$
 for some $a \in \mathbb{C}$ and $|b| \le 1/2$.

- 3. Let f be a non-constant entire function. Show that $\lim_{|z|\to\infty} |f(z)| = +\infty$ if and only if f is a non-constant polynomial. Recall that $\lim_{|z|\to\infty} |f(z)| = +\infty$ if and only if for every M > 0 there exists R > 0 such that |f(z)| > M for all $z \in \mathbb{C} \setminus B(0, R)$.
- 4. Evaluate

$$\int_{\gamma} \frac{z^{24}}{100z^{25} - 23z^{20} + 7z^{15} - 5} dz,$$

where $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$.

5. Find all holomorphic functions $f: B(0,1) \to \mathbb{C}$ such that

$$f''(1/n) + f(1/n) = 0$$
, for $n = 2, 3, 4, ...$

- 6. Show that if f is entire and satisfies:
 - (a) $\operatorname{Im} z > 0 \implies \operatorname{Im} f(z) > 0$,
 - (b) $\operatorname{Im} z = 0 \implies \operatorname{Im} f(z) = 0$,
 - (c) $\operatorname{Im} z < 0 \implies \operatorname{Im} f(z) < 0$,

then there exists $w \in \mathbb{C}$ such that f(w) = 0.

7. Find all harmonic functions $u : \mathbb{C} \to \mathbb{R}$ such that $\frac{\partial u}{\partial x} \ge 2025$.