GEOMETRY & TOPOLOGY PRELIMINARY EXAM, AUGUST 2025

Problem 1. (1) Let X and Y be two topological spaces. Prove that a function $f: X \to Y$ is continuous if and only if for any subset $A \subset Y$,

$$\overline{f^{-1}(A)} \subset f^{-1}(\overline{A})$$

where \overline{A} is the closure of A.

(2) Let A and B be subsets of a topological space X so that $A \cup B$ and $A \cap B$ are connected. Prove that if A and B are closed, then both A and B are connected.

Problem 2. Let X and Y be topological spaces, and let $\pi_X : X \times Y \to X$ be the projection map.

- (1) Give an example showing that, in general, π_X need not be a closed map.
- (2) Prove that if Y is compact, then π_X is a closed map.

Problem 3. Let \mathbb{P}^n be the real projective space, defined as the quotient space of $\mathbb{R}^{n+1}\setminus\{0\}$ under the equivalence relation:

$$(x_0, \dots, x_n) \sim (y_0, \dots, y_n)$$
 if and only if $(y_0, \dots, y_n) = \lambda(x_0, \dots, x_n)$

for some nonzero real number λ . For a nonzero vector (x_0, \ldots, x_n) , we denote its equivalence class in \mathbb{P}^n as

$$[x_0:\cdots:x_n]=\{(\lambda x_0,\ldots,\lambda x_n):\lambda\in\mathbb{R}\setminus\{0\}\}.$$

(1) Show that the sets

$$U_i = \{ [x_0 : \dots : x_n] \in \mathbb{P}^n : x_i \neq 0 \}, \quad i = 0, \dots, n \}$$

form an open cover of \mathbb{P}^n .

(2) Prove that each U_i is homeomorphic to \mathbb{R}^n .

Problem 4. Let $f: X \to Y$ be a continuous bijection, where X is compact.

- (1) If Y is Hausdorff, show that f is a homeomorphism.
- (2) If the assumption that Y is Hausdorff is removed in (1), is f still a homeomorphism? Prove it or give a counter-example.

Problem 5. Let $X \subseteq \mathbb{R}^3$ be the union of the unit 2-sphere $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ with the line segment $\{(0,0,z) : -1 \le z \le 1\}$. Compute the fundamental group of X based at the north pole (0,0,1), giving explicit generator(s).

Problem 6. Let $n \geq 1$ and \mathbb{S}^n be the *n*-dimensional sphere. Suppose $f: \mathbb{S}^n \to \mathbb{S}^n$ and $g: \mathbb{S}^n \to \mathbb{S}^n$ are continuous maps such that $f(x) \neq g(x)$ for all $x \in \mathbb{S}^n$. Prove that f is homotopic to the antipodal map of g; that is, $f \sim -g$.

1