Loss Models Prelims for Actuarial Students August 2025

Instructions:

- 1. There are five (5) equally-weighted questions and you are to answer all five.
- 2. Hand-held calculators are permitted.
- 3. Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- 4. Please write legibly. Points will be deducted for incoherent, incorrect, and/or irrelevant statements.

Question No. 1:

Consider a collective risk model

$$S = \sum_{i=1}^{N} X_i,$$

in which N follows a Poisson distribution with mean 4 (i.e., $N \sim \mathcal{PN}(4)$), and the i.i.d. losses X follow a binomial distribution, $X \sim \mathcal{BN}(1, 0.2)$.

Use **two different methods** to calculate the probabilities that S equals 0 and 1, $\mathbb{P}(S=0)$ and $\mathbb{P}(S=1)$.

Question No. 2:

Suppose the pf-pdf of a non-negative random variable X is given by

$$f_X(x) = \begin{cases} 0.45, & \text{if } x = 0\\ \frac{1}{18} x^2, & \text{if } x \in (0,3)\\ p, & \text{if } x = 3\\ 0, & \text{otherwise} \end{cases},$$

in which p is a positive constant yet to be determined.

- (a) Calculate $VaR_{90\%}(X)$.
- (b) Calculate $\text{CVaR}_{90\%}(X)$.

Hint: Denoting F_X the cdf of a given random variable X, we define $\operatorname{VaR}_{\delta}(X) := \inf\{x \in \mathbb{R} : F_X(x) \geq \delta\}$ and $\operatorname{CVaR}_{\delta}(X) := \frac{1}{1-\delta} \int_{\delta}^1 \operatorname{VaR}_{\xi} d\xi$, for all $\delta \in (0,1)$.

Question No. 3:

Suppose that the aggregate loss S is given by the following collective risk model:

• the claim frequency N follows a Poisson $\mathcal{PN}(100)$ distribution;

• the (i.i.d.) ground-up losses X_i s follow an exponential distribution with mean 200.

Now all the policies are modified with a deductible of d = 50 and a maximum **covered loss** of u = 350. Denote the aggregate loss after modifications, \tilde{S} , by

$$\tilde{S} = \sum_{i=1}^{\tilde{N}} \tilde{X}_i,$$

in which \tilde{N} and \tilde{X}_i s are modified versions of N and X_i s. That is, $\tilde{X}_i > 0$ is the payment size in the i-th **payment event**, and \tilde{N} counts all the payment events.

- (a) Calculate the mean and second moment of \tilde{X} : $\mathbb{E}[\tilde{X}]$ and $\mathbb{E}[\tilde{X}^2]$.
- (b) Calculate the mean and variance of \tilde{S} : $\mathbb{E}[\tilde{S}]$ and $\mathbb{V}[\tilde{S}]$

Question No. 4:

The Zero-Inflated Poisson (ZIP) model is becoming widely used to model claim frequency N to account for data with excess zeros relative to the standard Poisson distribution. It assumes that zeros arise from two sources:

- (i) a degenerate process that always yields zero values; and
- (ii) a standard Poisson process.

Let $Y \sim \text{ZIP}(\pi, \lambda)$ where

- $\pi \in [0, 1]$ is the probability of an excess zero;
- $\lambda > 0$ is the standard Poisson mean parameter; and
- hence, the probability mass function is expressed as

$$p_n = \mathbb{P}(N = n) = \begin{cases} \pi + (1 - \pi)e^{-\lambda}, & \text{if } n = 0, \\ (1 - \pi)\frac{\lambda^n e^{-\lambda}}{n!}, & \text{if } n > 0. \end{cases}$$

- (a) Derive the mean and variance of the ZIP distribution in terms of the parameters π and λ .
- (b) Show that the variance of the ZIP distribution exceeds the mean unless $\pi = 0$. Interpret this in the context of overdispersion.
- (c) Now, suppose you observe an i.i.d. sample of m observations n_1, n_2, \ldots, n_m from a $ZIP(\pi, \lambda)$.
 - (i) Write the log-likelihood function $\ell(\pi, \lambda)$.
 - (ii) Derive the score equations for the maximum likelihood estimation (MLE). Simplify your equations using the following symbols:

 $N_0 = \text{total number of zeros observed};$ and

 $N_{+} = N - N_{0} = \text{total number of positive counts observed.}$

Do not solve.

(iii) It will be clear there is no explicit solutions for the MLE. Suggest two possible ways to approximate the MLE in this case.

Question No. 5:

Suppose the pdf of the loss random variable X is given by

$$f(x) = \frac{8\theta^2}{x^3}, \qquad x \ge 2\theta,$$

in which $\theta > 0$ is an unknown parameter. A random sample of 5 observations on X is obtained:

$$x_1 = 8, x_2 = 10, x_3 = 12, x_4 = 14, x_5 = 16.$$

- (a) Use the quantile matching method (matching the median) to estimate θ .
- (b) Use the moments matching method (matching the mean) to estimate θ .

$$-$$
 end $-$