Loss Models Prelims for Actuarial Students
August 2025

Instructions:
1. There are five (5) equally-weighted questions and you are to answer all five.
2. Hand-held calculators are permitted.

3. Please provide details of your workings in the appropriate spaces provided; partial points
will be granted.

4. Please write legibly. Points will be deducted for incoherent, incorrect, and/or irrelevant
statements.

Question No. 1:

Consider a collective risk model

in which N follows a Poisson distribution with mean 4 (i.e., N ~ PN (4)), and the i.i.d. losses X
follow a binomial distribution, X ~ BN (1,0.2).

Use two different methods to calculate the probabilities that S equals 0 and 1, P(S = 0) and
P(S =1).

Question No. 2:

Suppose the pf-pdf of a non-negative random variable X is given by

045, ifx=0
I, .
—ux*, ifxe (0,3
fx(x) = 18 ( ) y
D, ifx=3
0, otherwise

in which p is a positive constant yet to be determined.
(a) Calculate VaRgoe (X).
(b) Calculate CVaRggy (X).

Hint: Denoting Fx the cdf of a given random variable X, we define VaRs(X) := inf{x € R :
Fx(z) > 6} and CVaR4(X) := %5 [, VaRed¢, for all § € (0, 1).

Question No. 3:
Suppose that the aggregate loss S is given by the following collective risk model:

e the claim frequency N follows a Poisson PN (100) distribution;



Loss MODELS PRELIMS AvugusT 2025

e the (i.i.d.) ground-up losses X;s follow an exponential distribution with mean 200.

Now all the policies are modified with a deductible of d = 50 and a maximum covered loss of
u = 350. Denote the aggregate loss after modifications, S, by

N
g — Z XZ‘,
i=1

in which N and Xl-s are modiﬁe~d versions of N and X;s. That is, X} > 0 is the payment size in
the i-th payment event, and N counts all the payment events.

(a) Calculate the mean and second moment of X: E[X] and E[X?].

(b) Calculate the mean and variance of S: E[S] and V[S].

Question No. 4:

The Zero-Inflated Poisson (ZIP) model is becoming widely used to model claim frequency N to
account for data with excess zeros relative to the standard Poisson distribution. It assumes that
zeros arise from two sources:

(i) a degenerate process that always yields zero values; and
(i) a standard Poisson process.
Let Y ~ ZIP(mw, \) where
e 7 € [0,1] is the probability of an excess zero;
e )\ > 0 is the standard Poisson mean parameter; and

e hence, the probability mass function is expressed as

T+ (1 —me?, ifn=0,
( ) (1-m>——, ifn>0.
n!

(a) Derive the mean and variance of the ZIP distribution in terms of the parameters = and \.

(b) Show that the variance of the ZIP distribution exceeds the mean unless 7 = 0. Interpret this
in the context of overdispersion.

(¢) Now, suppose you observe an i.i.d. sample of m observations ny,ns, ..., n,, from a ZIP(m, \).

(i) Write the log-likelihood function £(m, A).

(ii) Derive the score equations for the maximum likelihood estimation (MLE). Simplify your
equations using the following symbols:

Ny = total number of zeros observed; and
N, = N — Ny = total number of positive counts observed.

Do not solve.
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(iii) It will be clear there is no explicit solutions for the MLE. Suggest two possible ways to
approximate the MLE in this case.

Question No. 5:
Suppose the pdf of the loss random variable X is given by

862
f(x) = F, X Z 20,

in which 6 > 0 is an unknown parameter. A random sample of 5 observations on X is obtained:
r1 =8, 19 =10, x3 =12, x4 = 14, x5 = 16.
(a) Use the quantile matching method (matching the median) to estimate 6.
(b) Use the moments matching method (matching the mean) to estimate 6.

—end —



