Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (10 pts) Let G be a finite cyclic group with order n.
 - (a) (5 pts) Prove every subgroup of G is cyclic.
 - (b) (5 pts) If $d \mid n$, then prove (i) the subgroup $\langle g^{n/d} \rangle$ has order d and (ii) $\langle g^{n/d} \rangle$ is the only subgroup of order d.
- 2. (10 pts) Let G be a finite group. For a prime p, let $|G| = p^k m$ where $k \ge 0$ and $p \nmid m$, and let n_p be the number of Sylow p-subgroups of G.

Prove the third Sylow theorem, which has two statements:

- (i) $n_p \equiv 1 \mod p$,
- (ii) if P is a Sylow p-subgroup of G, then $n_p = [G : N_G(P)]$ and $n_p \mid m$, where $N_G(P)$ is the normalizer of P in G.

Your solution may use without proof the first two Sylow theorems and properties of group actions. Indicate clearly which group actions you rely on.

3. (**10 pts**)

- (a) (4 pts) In a commutative ring A, define prime ideals and maximal ideals.
- (b) (6 pts) In $\mathbf{Z}[x]$, show the ideal $(3, x^2 2)$ is maximal while the ideal $(7, x^2 2)$ is neither maximal nor prime.

4. (**10 pts**)

Every $n \times n$ real matrix A defines a linear map $\mathbf{R}^n \to \mathbf{R}^n$ in the usual way, by $\mathbf{v} \mapsto A\mathbf{v}$. The transpose of A is denoted A^{\top} .

- (a) (4 pts) Show $A\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot A^{\mathsf{T}} \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in \mathbf{R}^n .
- (b) (6 pts) Use the identity in (a) to show $\ker(A^{\top}) = (\operatorname{im}(A))^{\perp}$: in \mathbf{R}^n , the kernel of A^{\top} is the orthogonal complement of the image of A.
- 5. (10 pts) Let V be a finite-dimensional vector space over a field K and W be a subspace of V.
 - (a) (5 pts) Each φ in the dual space V^* can be restricted to W^* . Let $R_{V,W}: V^* \to W^*$ be this restriction: $R_{V,W}(\varphi) = \varphi|_W$. Prove $R_{V,W}$ is linear and surjective.
 - (b) (5 **pts**) The kernel of $R_{V,W}$ is $\{\varphi \in V^* : \varphi = 0 \text{ on } W\}$. Each $\varphi \in \ker R_{V,W}$ induces a linear map $\overline{\varphi} : V/W \to K$ where $\overline{\varphi}(v \mod W) = \varphi(v)$, so $\overline{\varphi} \in (V/W)^*$. Prove the mapping $\ker R_{V,W} \to (V/W)^*$ where $\varphi \mapsto \overline{\varphi}$ is a vector space isomorphism. (Hint: By part (a), $V^*/\ker R_{V,W} \cong W^*$, so describe dim($\ker R_{V,W}$) in terms of dim V and dim W.)
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) A description of S_n , for each $n \geq 3$, as a semidirect product of two nontrivial subgroups.
 - (b) (2.5 pts) A polynomial $f(x) \in \mathbf{Q}[x]$ such that $\mathbf{Q}[x]/(f(x)) \cong \mathbf{Q} \times \mathbf{Q}$ as rings.
 - (c) (2.5 pts) A quadratic ring $\mathbf{Z}[\sqrt{d}]$, meaning d in \mathbf{Z} is not a perfect square, whose only units are ± 1 .
 - (d) (2.5 pts) An inner product on \mathbb{R}^n besides the standard inner product.