Topics courses

Spring 2021

Math 5010: Singular integrals and applications

Instructor: Vasileios Chousionis

Description: This course will focus on the modern theory of singular integrals and its connections to geometric measure theory, complex analysis and potential theory. We will cover topics such as:

  1.  Overview of Calderon-Zygmund theory on spaces of homogeneous type
  2.  Non-homogeneous Calderon-Zygmund theory
  3.  The Cauchy transform and Analytic capacity
  4.  The Riesz transform and removability for Lipschitz harmonic functions
  5.  Singular Integrals on Lipschitz graphs

Good understanding of measure theory is required. Some knowledge of Fourier Analysis might be useful but 5140 is not a prerequisite.

MATH 5020: The Arithmetic of Elliptic Curves

Instructor: Alvaro Lozano-Robledo

Description: This course will be an introduction to elliptic curves, which roughly speaking are smooth cubic curves in the projective plane (turns out they have a simple model of the form $y^2=x^3+ax+b$). The surprising feature of elliptic curves is that their points can be made into an abelian group, and this group is finitely generated when we focus on points with coordinates in the rational numbers lying on an elliptic curve with rational coefficients.

Elliptic curves are central in modern number theory, e.g., they were essential in the proof of Fermat’s Last Theorem. The goal of the course will be to understand and calculate the group of all rational points on an elliptic curve (i.e., calculate its torsion and rank), and a number of more refined invariants (such as the order of the Shafarevich-Tate group).

The prerequisites for this course are the Abstract Algebra sequence (Math 5210 and 5211) and a basic understanding of algebraic number theory and algebraic geometry, although I will adjust the material to the audience background as much as I can. Our textbook will be “The Arithmetic of Elliptic Curves,” by Silverman, which is the standard graduate-level textbook for the subject.

MATH 5026: Introduction to Reverse Mathematics

Instructor: David Solomon

In mathematics, we sometimes encounter theorems that “are equivalent to the axioms of choice” or “require the parallel postulate to prove”. Reverse mathematics is the study of which axioms are required to prove specific theorems. In general, the axioms of set theory are too powerful for a reasonable analysis of this type, so the setting of reverse mathematics is second order arithmetic.

This course will start with an introduction to second order arithmetic and its most prominent subsystems. For each of the subsystems, we will analyze theorems from a variety of branches of mathematics that are equivalent to the subsystem.

The end of the course will focus on the existence of special models of the subsystems that give rise to conservation results.

The only prerequisite for this course is a general introduction to logic such as Math 5260.

Math 5030: Geometric Analysis on Manifolds

Instructor: Ovidiu Munteanu

This course is an introduction to the linear theory of partial differential equations on open manifolds. Assuming some appropriate information on curvature, we will study properties of solutions to the Laplace and heat equations, which in turn will give us more insight about the geometry and topology of the underlying manifold.

For example, we will use harmonic functions to count the number of ends of open manifolds, and see applications to rigidity results for manifolds with more than one end.

The techniques developed in this theory are essential to many other problems in geometric analysis, such as in the study of geometric flows on manifolds.

The course follows Peter Li’s book Geometric Analysis, Cambridge Studies in Advanced Mathematics

Prerequisites: Basic knowledge of Riemannian geometry will be assumed. The course is self contained on the PDE’s side.


Fall 2020

Math 5010: Yang-Mills Theory

Instructor: Maria Gordina

Description: We will discuss mathematical foundations of the standard model of elementary particle theory.
We will begin with classical physics equations of Newtonian mechanics, then will move to the Lagrangian mechanics, Hamiltonian mechanics, quantum mechanics (including Heisenberg versus Schroedinger picture), and finally arrive to the quantum field theory. In parallel we will need to understand two classical theories, namely, Maxwell’s equations and Yang-Mills equations. The needed differential geometrical notions will be covered as well.

Math 5020: Enumerative Combinatorics

Instructor: Thomas Roby

Description: The course will give an introduction to enumerative combinatorics at the graduate level, focusing on techniques useful for those specializing in other research areas as well as combinatorics. Topics will include: basic enumeration, multiset permutations and statistics, generating functions, bijective proofs, q-analogues, sieve methods, exponential formula, Lagrange inversion.

Text: Enumerative Combinatorics 1 (2nd edition) and 2, by Richard Stanley (selections from chapters 1,2,4,5, and 6).

Math 5031: Einstein Manifolds

Instructor: Fabrice Baudoin

Recordings of Lectures:

Description: In this course we will study some topics in Riemannian and pseudo- Riemannian geometry. We will mostly focus on Ricci curvature and its applications. The course will start with basics about Riemannian and pseudo-Riemannian geometry. We will assume familiarity with differential manifolds and basic calculus on them.

We will cover the following topics:
• Linear connections on vector bundles: Torsion, Curvature, Bianchi identities
• Riemannian and pseudo-Riemannian manifolds
• Get the feel of Ricci curvature: Volume comparison theorems, Bonnet-Myers theorem
• Ricci curvature as a PDE
• Einstein manifolds and topology
• Homogeneous Riemannian manifolds
• Kahler and Calabi-Yau manifolds
• Quaternion-Kahler manifolds

Text: Einstein manifolds, by A.L. Besse, Springer, 1987.

Math 5040: Topics in PDE

Instructor: Xiadong Yan

Description: This topic class will cover two different topics in PDE. In 1970s, De Giorgi made a conjecture regarding level sets for solutions of semilinear PDE’s. Over the years, many mathematicians have made contributions to the problem. For the first topic, we will discuss results and technique for classical De Giorgi conjecture and its extension to fractional PDEs and (possibly) models related to thin film equations.
First introduced by Skyrme in 1960s, skyrmions are topological solitons that emerge in many physical contexts such as superfluid, Bos-Einstein condensates with ferromagnetic order, liquid crystals and magnetism. Magnetic skyrmions have attracted a lot of attentions in recent years due to their topological structure which hold promises for future information technologies. In the second part of the class, we will discuss some recent results on magnetic skyrmions.

Math 5121: Conformal Dynamics: from the complex plane to Carnot groups

Instructor: Vasileios Chousionis

Description: The course will cover a variety of topics whose common underlying theme is the iteration of conformal maps. Such as:

  •  Basics of complex dynamics including iteration of meromorphic functions
  •  Conformal maps in Euclidean spaces and conformal fractals
  • Rigidity of conformal maps in Carnot groups
  •  Conformal graph directed Markov systems on Carnot groups
  •  Dynamics of real, complex and Iwasawa continued fractions

On the way we are going to introduce and employ ideas from geometric measure theory, ergodic theory, geometric function theory and sub-Riemannian geometry.